Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

Универсальная тригонометрическая подстановка

Обзор основных формул тригонометрии завершаем формулами, выражающими тригонометрические функции через тангенс половинного угла. Такая замена получила название универсальной тригонометрической подстановки . Ее удобство заключается в том, что все тригонометрические функции выражаются через тангенс половинного угла рационально без корней.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Для решения некоторых задач будет полезной таблица тригонометрических тождеств, которая позволит гораздо проще совершать преобразования функций:

Простейшие тригонометрические тождества

Частное от деления синуса угла альфа на косинус того же угла равно тангенсу этого угла (Формула 1). См. также доказательство правильности преобразования простейших тригонометрических тождеств .
Частное от деления косинуса угла альфа на синус того же угла равно котангенсу этого же угла (Формула 2)
Секанс угла равен единице, деленной на косинус этого же самого угла (Формула 3)
Сумма квадратов синуса и косинуса одного и того же угла равна единице (Формула 4). см. также доказательство суммы квадратов косинуса и синуса .
Сумма единицы и тангенса угла равна отношению единицы к квадрату косинуса этого угла (Формула 5)
Единица плюс котангенс угла равна частному от деления единицы на синус квадрат этого угла (Формула 6)
Произведение тангенса на котангенс одного и того же угла равно единице (Формула 7).

Преобразование отрицательных углов тригонометрических функций (четность и нечетность)

Для того, чтобы избавиться от отрицательного значения градусной меры угла при вычислении синуса, косинуса или тангенса, можно воспользоваться следующими тригонометрическими преобразованиями (тождествами), основанными на принципах четности или нечетности тригонометрических функций.


Как видно, косинус и секанс является четной функцией , синус, тангенс и котангенс - нечетные функции .

Синус отрицательного угла равен отрицательному значению синуса этого же самого положительного угла (минус синус альфа).
Косинус "минус альфа" даст тоже самое значение, что и косинус угла альфа.
Тангенс минус альфа равен минус тангенс альфа.

Формулы приведения двойного угла (синус, косинус, тангенс и котангенс двойного угла)

Если необходимо разделить угол пополам, или наоборот, перейти от двойного угла к одинарному, можно воспользоваться следующими тригонометрическими тождествами:


Преобразование двойного угла (синуса двойного угла, косинуса двойного угла и тангенса двойного угла ) в одинарный происходит по следующим правилам:

Синус двойного угла равен удвоенному произведению синуса на косинус одинарного угла

Косинус двойного угла равен разности квадрата косинуса одинарного угла и квадрата синуса этого угла

Косинус двойного угла равен удвоенному квадрату косинуса одинарного угла минус единица

Косинус двойного угла равен единице минус двойной синус квадрат одинарного угла

Тангенс двойного угла равен дроби, числитель которой - удвоенный тангенс одинарного угла, а знаменатель равен единице минус тангенс квадрат одинарного угла.

Котангенс двойного угла равен дроби, числитель которой - квадрат котангенса одинарного угла минус единица, а знаменатель равен удвоенному котангенсу одинарного угла

Формулы универсальной тригонометрической подстановки

Указанные ниже формулы преобразования могут пригодиться, когда нужно аргумент тригонометрической функции (sin α, cos α, tg α) разделить на два и привести выражение к значению половины угла. Из значения α получаем α/2 .

Данные формулы называются формулами универсальной тригонометрической подстановки . Их ценность заключается в том, что тригонометрическое выражение с их помощью сводится к выражению тангенса половины угла, вне зависимости от того, какие тригонометрические функции (sin cos tg ctg) были в выражении изначально. После этого уравнение с тангенсом половины угла решить гораздо проще.

Тригонометрические тождества преобразования половины угла

Указанные ниже формулы тригонометрического преобразования половинной величины угла к его целому значению.
Значение аргумента тригонометрической функции α/2 приводится к значению аргумента тригонометрической функции α.

Тригонометрические формулы сложения углов

cos (α - β) = cos α · cos β + sin α · sin β

sin (α + β) = sin α · cos β + sin β · cos α

sin (α - β) = sin α · cos β - sin β · cos α
cos (α + β) = cos α · cos β - sin α · sin β

Тангенс и котангенс суммы углов альфа и бета могут быть преобразованы по следующим правилам преобразования тригонометрических функций:

Тангенс суммы углов равен дроби, числитель которой - сумма тангенса первого и тангенса второго угла, а знаменатель - единица минус произведение тангенса первого угла на тангенс второго угла.

Тангенс разности углов равен дроби, числитель которой равен разности тангенса уменьшаемого угла и тангенса вычитаемого угла, а знаменатель - единице плюс произведение тангенсов этих углов.

Котангенс суммы углов равен дроби, числитель которой равен произведению котангенсов этих углов плюс единица, а знаменатель равен разности котангенса второго угла и котангенса первого угла.

Котангенс разности углов равен дроби, числитель которой - произведение котангенсов этих углов минус единица, а знаменатель равен сумме котангенсов этих углов.

Данные тригонометрические тождества удобно применять, когда нужно вычислить, например, тангенс 105 градусов (tg 105). Если его представить как tg (45 + 60), то можно воспользоваться приведенными тождественными преобразованиями тангенса суммы углов, после чего просто подставить табличные значения тангенса 45 и тангенса 60 градусов.

Формулы преобразования суммы или разности тригонометрических функций

Выражения, представляющие собой сумму вида sin α + sin β можно преобразовать с помощью следующих формул:

Формулы тройного угла - преобразование sin3α cos3α tg3α в sinα cosα tgα

Иногда необходимо преобразовать тройную величину угла так, чтобы аргументом тригонометрической функции вместо 3α стал угол α.
В этом случае можно воспользоваться формулами (тождествами) преобразования тройного угла:

Формулы преобразования произведения тригонометрических функций

Если возникает необходимость преобразовать произведение синусов разных углов косинусов разных углов или даже произведения синуса на косинус, то можно воспользоваться следующими тригонометрическими тождествами:


В этом случае произведение функций синуса, косинуса или тангенса разных углов будет преобразовано в сумму или разность.

Формулы приведения тригонометрических функций

Пользоваться таблицей приведения нужно следующим образом. В строке выбираем функцию, которая нас интересует. В столбце - угол. Например, синус угла (α+90) на пересечении первой строки и первого столбца выясняем, что sin (α+90) = cos α .

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Продолжаем наш разговор про наиболее употребляемые формулы в тригонометрии. Важнейшие из них – формулы сложения.

Определение 1

Формулы сложения позволяют выразить функции разности или суммы двух углов с помощью тригонометрических функций этих углов.

Для начала мы приведем полный список формул сложения, потом докажем их и разберем несколько наглядных примеров.

Yandex.RTB R-A-339285-1

Основные формулы сложения в тригонометрии

Выделяют восемь основных формул: синус суммы и синус разности двух углов, косинусы суммы и разности, тангенсы и котангенсы суммы и разности соответственно. Ниже приведены их стандартные формулировки и вычисления.

1.Синус суммы двух углов можно получить следующим образом:

Вычисляем произведение синуса первого угла на косинус второго;

Умножаем косинус первого угла на синус первого;

Складываем получившиеся значения.

Графическое написание формулы выглядит так: sin (α + β) = sin α · cos β + cos α · sin β

2. Синус разности вычисляется почти так же, только полученные произведения нужно не сложить, а вычесть друг из друга. Таким образом, вычисляем произведения синуса первого угла на косинус второго и косинуса первого угла на синус второго и находим их разность. Формула пишется так: sin (α - β) = sin α · cos β + sin α · sin β

3. Косинус суммы. Для него находим произведения косинуса первого угла на косинус второго и синуса первого угла на синус второго соответственно и находим их разность: cos (α + β) = cos α · cos β - sin α · sin β

4. Косинус разности: вычисляем произведения синусов и косинусов данных углов, как и ранее, и складываем их. Формула: cos (α - β) = cos α · cos β + sin α · sin β

5. Тангенс суммы. Эта формула выражается дробью, в числителе которой – сумма тангенсов искомых углов, а в знаменателе – единица, из которой вычитается произведение тангенсов искомых углов. Все понятно из ее графической записи: t g (α + β) = t g α + t g β 1 - t g α · t g β

6. Тангенс разности. Вычисляем значения разности и произведения тангенсов данных углов и поступаем с ними схожим образом. В знаменателе мы прибавляем к единице, а не наоборот: t g (α - β) = t g α - t g β 1 + t g α · t g β

7. Котангенс суммы. Для вычислений по этой формуле нам понадобятся произведение и сумма котангенсов данных углов, с которыми мы поступаем следующим образом: c t g (α + β) = - 1 + c t g α · c t g β c t g α + c t g β

8. Котангенс разности. Формула схожа с предыдущей, но в числителе и знаменателе – минус, а не плюс c t g (α - β) = - 1 - c t g α · c t g β c t g α - c t g β .

Вы, наверное, заметили, что эти формулы попарно схожи. При помощи знаков ± (плюс-минус) и ∓ (минус-плюс) мы можем сгруппировать их для удобства записи:

sin (α ± β) = sin α · cos β ± cos α · sin β cos (α ± β) = cos α · cos β ∓ sin α · sin β t g (α ± β) = t g α ± t g β 1 ∓ t g α · t g β c t g (α ± β) = - 1 ± c t g α · c t g β c t g α ± c t g β

Соответственно, мы имеем одну формулу записи для суммы и разности каждого значения, просто в одном случае мы обращаем внимание на верхний знак, в другом – на нижний.

Определение 2

Мы можем взять любые углы α и β , и формулы сложения для косинуса и синуса подойдут для них. Если мы можем правильно определить значения тангенсов и котангенсов этих углов, то формулы сложения для тангенса и котангенса будут также для них справедливы.

Как и большинство понятий в алгебре, формулы сложения могут быть доказаны. Первая формула, которую мы докажем, - формула косинуса разности. Из нее потом можно легко вывести остальные доказательства.

Уточним основные понятия. Нам понадобится единичная окружность. Она получится, если мы возьмем некую точку A и повернем вокруг центра (точки O) углы α и β . Тогда угол между векторами O A 1 → и O A → 2 будет равняться (α - β) + 2 π · z или 2 π - (α - β) + 2 π · z (z – любое целое число). Получившиеся вектора образуют угол, который равен α - β или 2 π - (α - β) , или он может отличаться от этих значений на целое число полных оборотов. Взгляните на рисунок:

Мы воспользовались формулами приведения и получили следующие результаты:

cos ((α - β) + 2 π · z) = cos (α - β) cos (2 π - (α - β) + 2 π · z) = cos (α - β)

Итог: косинус угла между векторами O A 1 → и O A 2 → равняется косинусу угла α - β , следовательно, cos (O A 1 → O A 2 →) = cos (α - β) .

Вспомним определения синуса и косинуса: синус - функция угла, равная отношению катета противолежащего угла к гипотенузе, косинус – это синус дополнительного угла. Следовательно, точки A 1 и A 2 имеют координаты (cos α , sin α) и (cos β , sin β) .

Получим следующее:

O A 1 → = (cos α , sin α) и O A 2 → = (cos β , sin β)

Если непонятно, взгляните на координаты точек, расположенных в начале и конце векторов.

Длины векторов равны 1 , т.к. у нас единичная окружность.

Разберем теперь скалярное произведение векторов O A 1 → и O A 2 → . В координатах оно выглядит так:

(O A 1 → , O A 2) → = cos α · cos β + sin α · sin β

Из этого мы можем вывести равенство:

cos (α - β) = cos α · cos β + sin α · sin β

Таким образом, формула косинуса разности доказана.

Теперь мы докажем следующую формулу – косинуса суммы. Это проще, поскольку мы можем воспользоваться предыдущими расчетами. Возьмем представление α + β = α - (- β) . У нас есть:

cos (α + β) = cos (α - (- β)) = = cos α · cos (- β) + sin α · sin (- β) = = cos α · cos β + sin α · sin β

Это и есть доказательство формулы косинуса суммы. В последней строчке использовано свойство синуса и косинуса противоположных углов.

Формулу синуса суммы можно вывести из формулы косинуса разности. Возьмем для этого формулу приведения:

вида sin (α + β) = cos (π 2 (α + β)) . Так
sin (α + β) = cos (π 2 (α + β)) = cos ((π 2 - α) - β) = = cos (π 2 - α) · cos β + sin (π 2 - α) · sin β = = sin α · cos β + cos α · sin β

А вот доказательство формулы синуса разности:

sin (α - β) = sin (α + (- β)) = sin α · cos (- β) + cos α · sin (- β) = = sin α · cos β - cos α · sin β
Обратите внимание на использование свойств синуса и косинуса противоположных углов в последнем вычислении.

Далее нам нужны доказательства формул сложения для тангенса и котангенса. Вспомним основные определения (тангенс – отношение синуса к косинусу, а котангенс –наоборот) и возьмем уже выведенные заранее формулы. У нас получилось:

t g (α + β) = sin (α + β) cos (α + β) = sin α · cos β + cos α · sin β cos α · cos β - sin α · sin β

У нас получилась сложная дробь. Далее нам нужно разделить ее числитель и знаменатель на cos α · cos β , учитывая что cos α ≠ 0 и cos β ≠ 0 , получаем:
sin α · cos β + cos α · sin β cos α · cos β cos α · cos β - sin α · sin β cos α · cos β = sin α · cos β cos α · cos β + cos α · sin β cos α · cos β cos α · cos β cos α · cos β - sin α · sin β cos α · cos β

Теперь сокращаем дроби и получаем формулу следующего вида: sin α cos α + sin β cos β 1 - sin α cos α · s i n β cos β = t g α + t g β 1 - t g α · t g β .
У нас получилось t g (α + β) = t g α + t g β 1 - t g α · t g β . Это и есть доказательство формулы сложения тангенса.

Следующая формула, которую мы будем доказывать – формула тангенса разности. Все наглядно показано в вычислениях:

t g (α - β) = t g (α + (- β)) = t g α + t g (- β) 1 - t g α · t g (- β) = t g α - t g β 1 + t g α · t g β

Формулы для котангенса доказываются схожим образом:
c t g (α + β) = cos (α + β) sin (α + β) = cos α · cos β - sin α · sin β sin α · cos β + cos α · sin β = = cos α · cos β - sin α · sin β sin α · sin β sin α · cos β + cos α · sin β sin α · sin β = cos α · cos β sin α · sin β - 1 sin α · cos β sin α · sin β + cos α · sin β sin α · sin β = = - 1 + c t g α · c t g β c t g α + c t g β
Далее:
c t g (α - β) = c t g   (α + (- β)) = - 1 + c t g α · c t g (- β) c t g α + c t g (- β) = - 1 - c t g α · c t g β c t g α - c t g β

Тригонометрия, тригонометрические формулы

Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом — задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности. Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье основные тригонометрические тождества.

К началу страницы

Формулы приведения



Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса, то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье формулы приведения.

К началу страницы

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Более подробная информация содержится в статье формулы сложения.

К началу страницы

Формулы двойного, тройного и т.д. угла


Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла.

К началу страницы

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье формулы половинного угла.

К началу страницы

Формулы понижения степени

Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

К началу страницы

Формулы суммы и разности тригонометрических функций

Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Вывод формул, а также примеры их применения смотрите в статье формулы суммы и разности синуса и косинуса.

К началу страницы

Формулы произведения синусов, косинусов и синуса на косинус

Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус.

К началу страницы

Универсальная тригонометрическая подстановка

Обзор основных формул тригонометрии завершаем формулами, выражающими тригонометрические функции через тангенс половинного угла. Такая замена получила название универсальной тригонометрической подстановки . Ее удобство заключается в том, что все тригонометрические функции выражаются через тангенс половинного угла рационально без корней.

Для более полной информации смотрите статью универсальная тригонометрическая подстановка.

К началу страницы

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. — 3-е изд. — М.: Просвещение, 1993. — 351 с.: ил. — ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Тригонометрические формулы — это самые необходимые в тригонометрии формулы, необходимые для выражения тригонометрических функций, которые выполняются при любых значениях аргумента.

Формулы сложения.

sin (α + β) = sin α · cos β + sin β · cos α

sin (α — β) = sin α · cos β — sin β · cos α

cos (α + β) = cos α · cos β — sin α · sin β

cos (α — β) = cos α · cos β + sin α · sin β

tg (α + β) = (tg α + tg β) ÷ (1 — tg α · tg β)

tg (α — β) = (tg α — tg β) ÷ (1 + tg α · tg β)

ctg (α + β) = (ctg α · ctg β + 1) ÷ (ctg β — ctg α)

ctg (α — β) = (ctg α · ctg β — 1) ÷ (ctg β + ctg α)

Формулы двойного угла.

cos 2 α = cos² α — sin² α

cos 2 α = 2cos² α — 1

cos 2 α = 1 — 2sin² α

sin 2 α = 2sin α · cos α

tg 2α = (2tg α) ÷ (1 — tg² α)

ctg 2 α = (ctg² α — 1) ÷ (2ctg α )

Формулы тройного угла.

sin 3α = 3sin α — 4sin³ α

cos 3 α = 4cos³ α — 3cos α

tg 3 α = (3tg α — tg³ α ) ÷ (1 — 3tg² α )

ctg 3α = (3ctg α — ctg³ α) ÷ (1 — 3ctg² α)

Формулы половинного угла.

Формулы приведения.

Функция / угол в рад.

π/2 - α

π/2 + α

3π/2 - α

3π/2 + α

2π - α

2π + α

Функция / угол в °

90° - α

90° + α

180° - α

180° + α

270° - α

270° + α

360° - α

360° + α

Подробное описание формул приведения.

Основные тригонометрические формулы.

Основное тригонометрическое тождество:

sin 2 α+cos 2 α=1

Данное тождество − результат применения теоремы Пифагора к треугольнику в единичном тригонометрическом круге.

Соотношение между косинусом и тангенсом:

1/cos 2 α−tan 2 α=1 или sec 2 α−tan 2 α=1.

Данная формула является следствием основного тригонометрического тождества и получается из него делением левой и правой части на cos2α. Предполагается, что α≠π/2+πn,n∈Z.

Соотношение между синусом и котангенсом:

1/sin 2 α−cot 2 α=1 или csc 2 α−cot 2 α=1.

Эта формула также следует из основного тригонометрического тождества (получается из него делением левой и правой части на sin2α . Здесь предполагается, что α≠πn,n∈Z.

Определение тангенса:

tanα=sinα/cosα,

где α≠π/2+πn,n∈Z.

Определение котангенса:

cotα=cosα/sinα,

где α≠πn,n∈Z.

Следствие из определений тангенса и котангенса:

tanα cotα=1,

где α≠πn/2,n∈Z.

Определение секанса:

secα=1/cosα,α≠π/2+πn,n Z

Определение косеканса:

cscα=1/sinα,α≠πn,n Z

Тригонометрические неравенства.

Простейшие тригонометрические неравенства:

sinx > a, sinx ≥ a, sinx < a, sinx ≤ a,

cosx > a, cosx ≥ a, cosx < a, cosx ≤ a,

tanx > a, tanx ≥ a, tanx < a, tanx ≤ a,

cotx > a, cotx ≥ a, cotx < a, cotx ≤ a.

Квадраты тригонометрических функций.

Формулы кубов тригонометрических функций.

ТригонометрияМатематика. Тригонометрия. Формулы. Геометрия. Теория

Мы рассмотрели самые основные тригонометрические функции (не обольщайтесь помимо синуса, косинуса, тангенса и котангенса существует еще целое множество других функций, но о них позже), а пока рассмотрим некоторые основные свойства уже изученных функций.

Тригонометрические функции числового аргумента

Какое бы действительное число t ни взять, ему можно поставить в соответствие однозначно определенное число sin(t).

Правда, правило соответствия довольно сложное и заключается в следующем.

Чтобы по числу t найти значение sin(t), нужно:

  1. расположить числовую окружность на координатной плоскости так, чтобы центр окружности совпал с началом координат, а начальная точка А окружности попала в точку (1; 0);
  2. на окружности найти точку, соответствующую числу t;
  3. найти ординату этой точки.
  4. эта ордината и есть искомое sin(t).

Фактически речь идет о функции s = sin(t), где t - любое действительное число. Мы умеем вычислять некоторые значения этой функции (например, sin(0) = 0, \(sin \frac {\pi}{6} = \frac{1}{2} \) и т.д.), знаем некоторые ее свойства.

Связь тригонометрических функций

Как вы, надеюсь, догадываетесь все тригонометрические функции связаны между собой и даже не зная значение одной, ее можно найти через другое.

К примеру, самая главная формула, из всей тригонометрии - это основное тригонометрическое тождество :

\[ sin^{2} t + cos^{2} t = 1 \]

Как видите, зная значение синуса можно найти значение косинуса, и также наоборот.

Формулы тригонометрии

Также очень распространенные формулы, связывающие синус и косинус с тангенсом и котангенсом:

\[ \boxed {\tan\; t=\frac{\sin\; t}{\cos\; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {\cot\; t=\frac{\cos\; }{\sin\; }, \qquad t \neq \pi k} \]

Из двух последних формул можно вывести еще одно тригометрическое тождество, связывающее на этот раз тангенс и котангенс:

\[ \boxed {\tan \; t \cdot \cot \; t = 1, \qquad t \neq \frac{\pi k}{2}} \]

Теперь давайте посмотрим, как эти формулы действуют на практике.

ПРИМЕР 1. Упростить выражение: а) \(1+ \tan^2 \; t \), б) \(1+ \cot^2 \; t \)

а) В первую очередь распишем тангенс, сохраняя квадрат:

\[ 1+ \tan^2 \; t = 1 + \frac{\sin^2 \; t}{\cos^2 \; t} \]

\[ 1 + \frac{\sin^2 \; t}{\cos^2 \; t}= \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} \]

Теперь введем все под общий знаменатель, и получаем:

\[ \sin^2\; t + \cos^2 \; t + \frac{\sin^2 \; t}{\cos^2 \; t} = \frac{\cos^2 \; t + \sin^2 \; t}{\cos^2 \; t} \]

Ну и наконец, как мы видим числитель можно по основному тригонометрическому тождеству сократить до единицы, в итоге получаем:\[ 1+ \tan^2 \; = \frac{1}{\cos^2 \; t} \]

б) С котангенсом выполняем все те же самые действия, только в знаменателе будет уже не косинус, а синус и ответ получится таким:

\[ 1+ \cot^2 \; = \frac{1}{\sin^2 \; t} \]

Выполнив данное задание мы вывели еще две очень важные формулы, связывающие наши функции, которые тоже нужно знать, как свои пять пальцев:

\[ \boxed {1+ \tan^2 \; = \frac{1}{\cos^2 \; t}, \qquad t \neq \frac{\pi}{2}+ \pi k} \]

\[ \boxed {1+ \cot^2 \; = \frac{1}{\sin^2 \; t}, \qquad t \neq \pi k} \]

Все представленные в рамках формулы вы должны знать наизусть, иначе дальнейшее изучение тригонометрии без них просто невозможно. В дальнейшем будут еще формулы и их будет очень много и уверяю все их вы точно будете запоминать долго, а может и не запомните, но эти шесть штук должны знать ВСЕ!

Полная таблица всех основных и редких тригонометрических формул приведения.

Здесь можно найти тригонометрические формулы в удобном виде. А тригонометрические формулы приведения можно посмотреть на другой странице.

Основные тригонометрические тождества

— математические выражения для тригонометрических функций, выполняемые при каждом значении аргумента.

  • sin² α + cos² α = 1
  • tg α · ctg α = 1
  • tg α = sin α ÷ cos α
  • ctg α = cos α ÷ sin α
  • 1 + tg² α = 1 ÷ cos² α
  • 1 + ctg² α = 1 ÷ sin² α

Формулы сложения

  • sin (α + β) = sin α · cos β + sin β · cos α
  • sin (α — β) = sin α · cos β — sin β · cos α
  • cos (α + β) = cos α · cos β — sin α · sin β
  • cos (α — β) = cos α · cos β + sin α · sin β
  • tg (α + β) = (tg α + tg β) ÷ (1 — tg α · tg β)
  • tg (α — β) = (tg α — tg β) ÷ (1 + tg α · tg β)
  • ctg (α + β) = (ctg α · ctg β + 1) ÷ (ctg β — ctg α)
  • ctg (α — β) = (ctg α · ctg β — 1) ÷ (ctg β + ctg α)

https://uchim.org/matematika/trigonometricheskie-formuly — uchim.org

Формулы двойного угла

  • cos 2α = cos² α — sin² α
  • cos 2α = 2cos² α — 1
  • cos 2α = 1 — 2sin² α
  • sin 2α = 2sin α · cos α
  • tg 2α = (2tg α) ÷ (1 — tg² α)
  • ctg 2α = (ctg² α — 1) ÷ (2ctg α)

Формулы тройного угла

  • sin 3α = 3sin α — 4sin³ α
  • cos 3α = 4cos³ α — 3cos α
  • tg 3α = (3tg α — tg³ α) ÷ (1 — 3tg² α)
  • ctg 3α = (3ctg α — ctg³ α) ÷ (1 — 3ctg² α)

Формулы понижения степени

  • sin² α = (1 — cos 2α) ÷ 2
  • sin³ α = (3sin α — sin 3α) ÷ 4
  • cos² α = (1 + cos 2α) ÷ 2
  • cos³ α = (3cos α + cos 3α) ÷ 4
  • sin² α · cos² α = (1 — cos 4α) ÷ 8
  • sin³ α · cos³ α = (3sin 2α — sin 6α) ÷ 32

Переход от произведения к сумме

  • sin α · cos β = ½ (sin (α + β) + sin (α — β))
  • sin α · sin β = ½ (cos (α — β) — cos (α + β))
  • cos α · cos β = ½ (cos (α — β) + cos (α + β))

Мы перечислили довольно много тригонометрических формул, но если чего-то не хватает, пишите.

Всё для учебы » Математика в школе » Тригонометрические формулы — шпаргалка

Чтобы добавить страницу в закладки, нажмите Ctrl+D.

Группа с кучей полезной информации (подпишитесь, если предстоит ЕГЭ или ОГЭ):

Вся база рефератов, курсовых, дипломных работ и прочих учебных материалов предоставляется бесплатно. Используя материалы сайта Вы подтверждаете, что ознакомились с пользовательским соглашением и согласны со всеми его пунктами в полной мере.

дробно рассмотрено преобразование групп общих решений тригонометрических уравнений. В третьем разделе рассматриваются нестандартные тригонометрические уравнения, решения которых основано на функциональном подходе.

Все формулы (уравнения) тригонометрии: sin(x) cos(x) tg(x) ctg(x)

В четвертом разделе рассматриваются тригонометрические неравенства. Подробно рассмотрены методы решения элементарных тригонометрических неравенств, как на единичной окружности, так и …

… угол 1800-α= по гипотенузе и острому углу: => OB1=OB; A1B1=AB => x = -x1,y = y1=> Итак, в школьном курсе геометрии понятие тригонометрической функции вводится геометрическими средствами ввиду их большей доступности. Традиционная методическая схема изучения тригонометрических функций такова: 1) вначале определяются тригонометрические функции для острого угла прямоугольного …

… Домашнее задание 19(3,6), 20(2,4) Постановка цели Актуализация опорных знаний Свойства тригонометрических функций Формулы приведения Новый материал Значения тригонометрических функций Решение простейших тригонометрических уравнений Закрепление Решение задач Цель урока: сегодня мы будем вычислять значения тригонометрических функций и решать …

… сформулированной гипотезы необходимо было решить следующие задачи: 1. Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2. Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3. Экспериментально проверить эффективность разработанной методики. Для решения …

Тригонометрические формулы

Тригонометрические формулы

Представляем вашему вниманию различные формулы, связанные с тригонометрией.

(8) Котангенс двойного угла
ctg(2α) = ctg 2 (α) - 1 2ctg(α)
(9) Синус тройного угла sin(3α) = 3sin(α)cos 2 (α) - sin 3 (α) (10) Косинус тройного угла cos(3α) = cos 3 (α) - 3cos(α)sin 2 (α) (11) Косинус суммы/разности cos(α±β) = cos(α)cos(β) ∓ sin(α)sin(β) (12) Синус суммы/разности sin(α±β) = sin(α)cos(β) ± cos(α)sin(β) (13) Тангенс суммы/разности (14) Котангенс суммы/разности (15) Произведение синусов sin(α)sin(β) = ½(cos(α-β) - cos(α+β)) (16) Произведение косинусов cos(α)cos(β) = ½(cos(α+β) + cos(α-β)) (17) Произведение синуса на косинус sin(α)cos(β) = ½(sin(α+β) + sin(α-β)) (18) Сумма/разность синусов sin(α) ± sin(β) = 2sin(½(α±β))cos(½(α∓β)) (19) Сумма косинусов cos(α) + cos(β) = 2cos(½(α+β))cos(½(α-β)) (20) Разность косинусов cos(α) - cos(β) = -2sin(½(α+β))sin(½(α-β)) (21) Сумма/разность тангенсов (22) Формула понижения степени синуса sin 2 (α) = ½(1 - cos(2α)) (23) Формула понижения степени косинуса cos 2 (α) = ½(1 + cos(2α)) (24) Сумма/разность синуса и косинуса (25) Сумма/разность синуса и косинуса с коэффициентами (26) Основное соотношение арксинуса и арккосинуса arcsin(x) + arccos(x) = π/2 (27) Основное соотношение арктангенса и арккотангенса arctg(x) + arcctg(x) = π/2

Формулы общего вида

— версия для печати

Определения Синус угла α (обозн. sin(α) ) — отношение противолежащего от угла α катета к гипотенузе. Косинус угла α (обозн. cos(α) ) — отношение прилежащего к углу α катета к гипотенузе. Тангенс угла α (обозн. tg(α) ) — отношение противолежащего к углу α катета к прилежащему. Эквивалентное определение — отношение синуса угла α к косинусу того же угла — sin(α)/cos(α). Котангенс угла α (обозн. ctg(α) ) — отношение прилежащего к углу α катета к противолежащему. Эквивалентное определение — отношение косинуса угла α к синусу того же угла — cos(α)/sin(α). Другие тригонометрические функции : секанс — sec(α) = 1/cos(α); косеканс — cosec(α) = 1/sin(α). Примечание Мы специально не пишем знак * (умножить), — там, где две функции записаны подряд, без пробела, он подразумевается. Подсказка Для вывода формул косинуса, синуса, тангенса или котангенса кратных (4+) углов, достаточно расписать их по формулам соотв. косинуса, синуса, тангенса или котангенса суммы, либо сводить к предыдущим случаям, сводя до формул тройных и двойных углов. Дополнение Таблица производных

© Школяр . Математика (при поддержке «Ветвистого древа») 2009—2016

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png