), к-рое в каждый момент времени локализовано в конечной области пространства и относительно медленно изменяет свою структуру при распространении.

Примеры уединённых волн: а - стационарное возвышение (солитон) на мелкой воде; h - смещение поверхности жидкости; б - небольшой амплитуды в газе; р - изменение давления; в - возбуждения в аксоне нерва; и - мембраны. По оси абсцисс отложена переменная

Типичная У. в. имеет вид одиночного импульса или перепада (рис.), но У. в. может иметь и более сложную структуру.

В более узком смысле под У. в. понимают локализованную стационарную нелинейную волну, распространяющуюся без изменения формы с постоянной скоростью и описываемую ур-ниями в обыкновенных производных. В фазовом пространстве У. в. отвечает , соединяющая две различные точки равновесия или возвращающаяся в ту же самую точку. К У. в. относят, напр., такие типы нелинейных волн, как ударные волны в диссипативной среде, стационарные импульсные волны возбуждения в активных средах (напр., ) и в среде без потерь.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

УЕДИНЁННАЯ ВОЛНА

Волновое движение (см. Волны), к-рое в каждый момент времени локализовано в конечной области пространства и достаточно быстро убывает с удалением от этой области. Типичная У. в. имеет вид одиночного импульса или перепада (рис.), но У. в. может иметь и более сложную структуру.

В более узком смысле под У. в. понимают локализованную стационарную нелинейную волну, распространяющуюся без изменения формы с пост. скоростью и описываемую ур-ниями в обыкновенных производных. В фазовом пространстве У. в. отвечает траектория, соединяющая две разл. точки равновесия или возвращающаяся в ту же самую точку. К У. в. относят, напр., такие типы нелинейных волн, как ударные волны в диссипативной среде, стационарные импульсные волны возбуждения в активных средах (напр., нервный импульс) и солитон в среде без потерь. Лит. см. при ст. Солитон. Л. А. Островский.



Примеры уединённых волн: а - стационарное возвышение (соли-тон) на мелкой воде; h - смещение поверхности жидкости; б - ударная волна небольшой амплитуды в газе; p - изменение давления; в - импульс возбуждения в аксоне нерва; и - потенциал мембраны. По оси абсцисс отложена переменная где t - время, x -координата, u- скорость уединённой волны.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "УЕДИНЕННАЯ ВОЛНА" в других словарях:

    - (уединенная волна), структурно устойчивая уединенная волна, которая, распространяясь, не расширяется и сохраняет свою форму и скорость. Солитоны ведут себя, как частицы. Они важны во многих областях МЕХАНИКИ ТЕКУЧИХ СРЕД, а также ФИЗИКИ ТВЕРДОГО… … Научно-технический энциклопедический словарь

    Структурно устойчивая уединённая волна, распространяющаяся в нелинейной среде. Солитоны ведут себя подобно частицам (частицеподобная волна): при взаимодействии друг с другом или с некоторыми другими возмущениями они не разрушаются, а расходятся,… … Энциклопедический словарь

    Структурно устойчивая уединенная волна, распространяющаяся в нелинейной среде. Солитоны ведут себя подобно частицам (частицеподобная волна): при взаимодействии друг с другом или с некоторыми другими возмущениями они не разрушаются, а расходятся,… … Большой Энциклопедический словарь

    Солитон - структурно устойчивая уединенная волна, распространяющаяся в нелинейной среде, которая может характеризоваться как частицеподобная волна, частица … Начала современного естествознания

    1) Л. т. в д е с к р и п т и в н о й теории множеств: топологич. отображение между двумя множествами в можно продолжить до гомеоморфизма нек рых содержащих их множеств типа Следствием этой Л. т. является топологич. инвариантность хаусдорфова типа … Математическая энциклопедия

    Здесь описаны В.: а) водяные, б) воздушные звуковые, в) световые, г) электрические волны и д) математическая теория В. А) Волны в воде обыкновенно являются следствием косвенного удара ветра о воду. Поверхность воды от этого делается вогнутой, но… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Рассмотрим среду без диссипации Пусть пока нелинейность в среде квадратична, т. е. тогда вместо (19.1) будем искать уравнение, полученное Кортевегом и де Вризом для волн на поверхности жидкости:

Решения этого уравнения сейчас изучены очень подробно, в том числе и нестационарные, но мы будем обсуждать только самые простые из них, дополнив обсуждение качественными соображениями. Прежде всего поразмышляем над тем, к чему может привести добавление к уравнению простой волны слагаемого, описывающего дисперсионное расплывание. Как мы уже знаем, дисперсионное расплывание может компенсировать процесс опрокидывания волны, и тогда ее профиль стабилизируется, т. е. возможно существование стационарных бегущих волн, профиль которых не меняется во времени. Такие волны определены во всем пространстве и бегут с постоянной скоростью V, т. е. все переменные в волне являются функцией бегущей координаты Для них т. е. стационарные волны уравнения (19.14) описываются уравнением в обыкновенных производных или после интегрирования,

Таким образом, стационарным волнам уравнения Кортевега-де Вриза соответствует уравнение консервативного нелинейного осциллятора. Постоянную будем считать равной нулю (это всегда можно сделать, введя полую переменную), тогда уравнение (19.15) представляется в виде где Потенциальная энергия стационарных волн и их фазовый портрет приведены на рис. 19.6.

Существуют различные классы решений уравнения Кортевега-де Вриза. Можно выделить два из них.

1. Квазисинусоидальные колебания с малыми амплитудами (фазовые траектории вблизи состояния центра); для них нелинейность почти не сказывается (рис. 19.7 а).

2. Движение вблизи сепаратрисы и по самой сепаратрисе. Именно эти сильно нелинейные волны и представляют для нас интерес. Периодические движения вблизи сепаратрисы (рис. 19.76) называются кноидальными волнами. Сепаратрисе соответствует локализованное в пространстве решение в виде одиночного возвышения или уединенной волны - солитона (рис. 19.7 в) с амплитудой Это решение аналитически записывается в виде

где - характерная ширина солитона. Справедливость решения легко проверить прямой подстановкой его в уравнение (19.15) при

Рис. 19.6. Потенциальная энергия и фазовый портрет стационарных волн. Состояние равновесия центр. Солитон соответствует сепаратрисе

Рис. 19.7. Различные классы решений уравнения Кортевега-де Вриза и их соответствие фазового портрету стационарных волн: а - квазисинусоидальные колебания малой амплитуды - вблизи состояния центра; - кноидальные волны (периодические солитонные решетки) - вблизи сепаратрисы; в - солитон (уединенная волна) - сепаратриса

Используя при подстановке тождество получаем

Отсюда можно найти . Тождество (19.16) выполняется при любых , следовательно, коэффициенты при одинаковых степенях должны быть равны, т. е.

Итак, мы получили: - чем выше солитон, тем он уже; - чем солитон шире, тем он медленнее бежит и тем меньше его амплитуда. Таким образом, ширина, скорость и амплитуда солитона, описываемого уравнением Кортевега-де Вриза, однозначно связаны, т. е. семейство решений в виде солитонов однопараметрическое - меняем, например, V, получаем разные солитоны.

Почему солитоны, т. е. частные виды стационарных волн, интересны? Фактически по тон же причине, что и другие стационарные волны:

нестационарные возмущения довольно широкого класса в процессе распространения асимптотически приближаются к солитону! Экспериментально этот факт был обнаружен давно; еще более ста лет назад Скотт-Рассел наблюдал солитон и поэтично описал его .

Новая жизнь солитона - одного из самых привлекательных объектов современной физики - в значительной степени связала с построением точных решении многих уравнений нелинейной теории волн. При их построении большую роль сыграл так называемый метод обратной задачи рассеяния . Этот метод берет начало от работы Гарднера, Грина, Крускала и Миуры , которые в 1967 г. установили связь между уравнениями Кортевега-де Вриза и Шредингера. Поясним кратко суть этой связи. Как известно , уравнение Шредингера в случае, когда потенциал положительно определен и спадает до пуля при имеет финитные решения, стремящиеся вместе со своими производными к нулю на бесконечности, а спектр собственных значений дискретен. Рассмотрим уравнение Шредингера

где зависит от времени как от параметра. Тогда и собственные значения, вообще говоря, будут зависеть от Покажем, что собственные значения не будут зависеть от если функция удовлетворяет уравнению Кортевега-де Вриза (точнее, если - любое положительно определенное решение уравнения Кортевега-де Вриза, спадающее на , то соответствующий ему спектр собственных значений остается неизменным). Из уравнения (19.17) находим

Подставим это выражение в уравнение (19.14). После вычислений получим

где штрихи означают соответствующие производные по х.

Проинтегрируем левую и правую части (19.18) по х от до При этом правая часть получившегося уравнения обратится в нуль,

поскольку собственные функции (вместе со своими производными) дискретного спектра уравнения Шредингера исчезают на бесконечности. Таким образом,

Поскольку в силу нормировки то Так как решение произвольно, спектр нам неизвестен. Покажем теперь, что если - солитон, то уравнение Шредингера имеет единственное собственное значение. Когда - солитон, уравнение (19.17) принимает вид

Здесь Дискретные собственные значения уравнения Шредингера даются формулой (см. , § 23, задача 4)

где причем должно быть Подставляя в выражение для выписанные выше значения и а, получим т. е. существует единственное собственное значение Итак, мы получили, что: а) спектр собственных значений не зависит от хотя изменяется со временем; б) каждому собственному значению соответствует солитон. Отсюда следует вывод: любое локализованное положительное возмущение представляет собой набор солитонов и, если достаточно долго подождать, эти солитоны сформируются и возмущение превратится в последовательность солитонов, выстроившихся по амплитуде (рис. 19.8 в). Поскольку «соли-тонный состав» - набор солитонов, из которых состоит возмущение - не зависит от времени, солитоны могут лишь меняться местами в пространстве. Число солитонов зависит от формы начального возмущения; вершины их лежат на одной прямой, так как расстояние, пройденное каждым солитоном, пропорционально его скорости, а последняя, как мы уже знаем, пропорциональна амплитуде.

Такой метод решения уравнения Кортевега-де Вриза называется методом обратной задачи рассеяния, поскольку мы решаем задачу на собственные значения для уравнения Шредингера с потенциалом где играет роль параметра. В квантовомеханическом Если падающая из бесконечности волна плоская с единичной амплитудой, то амплитуда отраженной волны называется коэффициентом отражения. Мы искали сам потенциал. Это и есть решение обратной задачи квантовой теории рассеяния: по известному При дисперсионные эффекты несущественны: основную роль играет нелинейность, приводящая к формированию коротких импульсов, и лишь потом сказывается дисперсия, уравновешивающая процесс (рис. 19.86). Именно так начальное возмущение большей амплитуды распадается на последовательность солитонов, вершины которых лежат на одной прямой (на рис. 19.8 в приведены результаты численных расчетов, взятые из работы ).

После расчетов и поиска аналогий эти ученые установили, что уравнение, которое использовали Ферми, Паста и Улам, при уменьшении расстояния между грузиками и при неограниченном росте их числа переходит в уравнение Кортевега-де Фриса. То есть по существу задача, предложенная Ферми, сводилась к численному решению уравнения Кор­тевега-де Фриса, предложенного в 1895 году для описания уединенной волны Рассела. Примерно в те же годы было показано, что для описания ионно-звуковых волн в плазме используется также уравне­ние Кортевега-де Фриса. Тогда стало ясно, что это уравнение встречается во многих областях физики и, следовательно, уединенная волна, которая опи­сывается этим уравнением, является широко рас­пространенным явлением.

Продолжая вычислительные эксперименты по моделированию распространения таких волн, Крус­кал и Забуски рассмотрели их столкновение. Оста­новимся подробнее на обсуждении этого замеча­тельного факта. Пусть имеются две уединенные волны, описываемые уравнением Кортевега-де Фриса, которые различаются амплитудами и дви­жутся друг за другом в одном направлении (рис. 2). Из формулы для уединенных волн (8) следует, что скорость движения таких волн тем выше, чем боль­ше их амплитуда, а ширина пика уменьшается с ростом амплитуды. Таким образом, высокие уеди­ненные волны движутся быстрее. Волна с большей амплитудой догонит движущуюся впереди волну с меньшей амплитудой. Далее в течение некоторого времени две волны будут двигаться вместе как еди­ное целое, взаимодействуя между собой, а затем они разъединятся. Замечательным свойством этих-волн является то, что после своего взаимодействия форма и

Рис. 2. Два солитона, описываемые уравнением Кортевега-де Фриса,

до взаимодействия (вверху) и после (внизу)

скорость этих волн восстанавливаются. Обе волны после столкновения лишь смещаются на не­которое расстояние по сравнению с тем, как если бы они двигались без взаимодействия.

Процесс, у которого после взаимодействия волн сохраняются форма и скорость, напоминает упру­гое столкновение двух частиц. Поэтому Крускал и Забуски такие уединенные волны назвали солитонами (от англ. solitary- уединенный). Это специ­альное название уединенных волн, созвучное элек­трону, протону и многим другим элементарным частицам, в настоящее время общепринято.

Уединенные волны, которые были открыты Рас­селом, и в самом деле ведут себя как частицы. Боль­шая волна не проходит через малую при их взаимо­действии. Когда уединенные волны соприкасаются, то большая волна замедляется и уменьшается, а волна, которая была малой, наоборот, ускоряется и подрастает. И когда малая волна дорастает до разме­ров большой, а большая уменьшается до размеров малой, солитоны разделяются и больший уходит вперед. Таким образом, солитоны ведут себя как уп­ругие теннисные мячи.

Дадим определение солитона . Солитоном на­зывается нелинейная уединенная волна, которая сохраняет свою форму и скорость при собственном движении и столкновении с себе подобными уеди­ненными волнами, то есть представляет собой ус­тойчивое образование. Единственным результатом взаимодействия солитонов может быть некоторый сдвиг фаз.

Открытия, связанные с уравнением Кортевега - де Фриса, не закончились открытием солитона. Следующим важным шагом, имеющим отношение к этому замечательному уравнению, было создание нового метода решения нелинейных уравнений в частных производных. Хорошо известно, что най­ти решения нелинейных уравнений очень сложно. До 60-х годов нашего столетия считалось, что такие уравнения могут иметь только некоторые частные решения, удовлетворяющие специально заданным начальным условиям. Однако уравнение Кортевега-де Фриса и в этом случае оказалось в исключи­тельном положении.

В 1967 году американские физики К.С. Гарднер, Дж.М. Грин, М. Крускал и Р. Миура показали, что решение уравнения Кортевега-де Фриса может быть в принципе получено для всех начальных усло­вий, которые определенным образом обращаются в нуль при стремлении координаты к бесконечности. Они использовали преобразование уравнения Кортевега - де Фриса к системе двух уравнений, называ­емой теперь парой Лакса (по имени американского математика Питера Лакса, внесшего большой вклад в развитие теории солитонов), и открыли новый ме­тод решения ряда очень важных нелинейных урав­нений в частных производных. Этот метод получил название метода обратной задачи рассеяния, по­скольку в нем существенно используется решение задачи квантовой механики о восстановлении по­тенциала по данным рассеяния.

2.2. Групповой солитон

Выше мы говорили, что на практике волны, как правило, распространяются группами. Подобные группы волн на воде люди наблюдали с незапамят­ных времен. На вопрос о том, почему для волн на воде так типичны "стаи" волн, удалось ответить Т. Бенжамену и Дж. Фейеру только в 1967 году. Тео­ретическими расчетами они показали, что простая периодическая волна на глубокой воде неустойчива (теперь это явление называется неустойчивостью Бенжамена-Фейера), и поэтому волны на воде из-за неустойчивости разбиваются на группы. Уравнение, с помощью которого описывается распространение групп волн на воде, было получено В.Е. Захаровым в 1968 году. К тому времени это уравнение уже было известно в физике и носило название нелинейного уравнения Шрёдингера. В 1971 году В.Е. Захаров и А.Б. Шабат показали, что это нелинейное уравне­ние имеет решения также в виде солитонов, более того, нелинейное уравнение Шрёдингера, так же как и уравнение Кортевега-де Фриса, может быть проинтегрировано методом обратной задачи рассея­ния. Солитоны нелинейного уравнения Шрёдинге­ра отличаются от обсуждаемых выше солитонов Кортевега-де Фриса тем, что они соответствуют форме огибающей группы волн. Внешне они на­поминают модулированные радиоволны. Эти солитоны называются групповыми солитонами, а иногда солитонами огибающей. Это название от­ражает сохраняемость при взаимодействии огиба­ющей волнового пакета (аналог штриховой ли­нии, представленной на рис. 3), хотя сами волны под огибающей двигаются со скоростью, отличной от групповой. При этом форма огибающей описывается


Рис. 3. Пример группового солитона (штриховая линия)

зависимостью

a(x,t)=a 0 ch -1 ()

где а а - амплитуда, а l - половина размера солитона. Обычно под огибающей солитона находится от 14 до 20 волн, причем средняя волна самая большая. С этим связан хорошо известный факт, что самая вы­сокая волна в группе на воде находится между седь­мой и десятой (девятый вал). Если в группе волн об­разовалось большее количество волн, то произойдет ее распад на несколько групп.

Нелинейное уравнение Шрёдингера, как и урав­нение Кортевега- де Фриса, также имеет широкую распространенность при описании волн в различ­ных областях физики. Это уравнение было предло­жено в 1926 году выдающимся австрийским физи­ком Э. Шрёдингером для анализа фундаментальных свойств квантовых систем и первоначально ис­пользовано при описании взаимодействия внут­риатомных частиц. Обобщенное или нелинейное уравнение Шрёдингера описывает совокупность явлений в физике волновых процессов. Например, оно используется для описания эффекта самофоку­сировки при воздействии мощного лазерного луча на нелинейную диэлектрическую среду и для опи­сания распространения нелинейных волн в плазме.


3. Постановка задачи

3.1. Описание модели.В настоящее время наблюдается значи­тельно возрастающий интерес к исследованию нелинейных волно­вых процессов в различных областях физики (например, в оптике, физике плазмы, радиофизике, гидродинамике и т.д.). Для изучения волн малой, но конечной амплитуды в дисперсионных средах в каче­стве модельного уравнения часто используют уравнение Кортевега-де Фриза (КдФ):

u t + ии х + b и ххх = 0 (3.1)

Уравнение КдФ было использовано для описания магнитозвуковых волн, распространяющихся строго поперек магнитного поля или под углами, близкими к

.

Основные предположения, которые делаются при выводе уравне­ния: 1) малая, но конечная амплитуда, 2) длина волны велика по сравнению с длиной дисперсии.

Компенсируя действие нелинейности, дисперсия дает возможность формироваться в дисперсионной среде стационарным волнам конеч­ной амплитуды - уединенным и периодическим. Уединенные волны для уравнения КдФ после работы стали называться солитонами . Периодические волны носят название кноидальных волн. Соот­ветствующие формулы для их описания даны в .

3.2. Постановка дифференциальной задачи.В работе иссле­дуется численное решение задачи Коши для уравнения Кортевега-де Фриза с периодическими условиями по пространству в прямоуголь­нике Q T ={( t , x ):0< t < T , x Î [0, l ].

u t + ии х + b и ххх = 0 (3.2)

u(x,t)| x=0 =u(x,t)| x=l (3.3)

с начальным условием

u(x,t)| t=0 =u 0 (x) (3.4)

4. Свойства уравнения Кортевега - де Фриза

4.1. Краткий обзор результатов по уравнению КдФ.Задача Коши для уравнения КдФ при различных предположениях отно­сительно u 0 (х) рассматривалась во многих работах . Задача о существовании и единственности решения с условиями периодично­сти в качестве краевых условий была решена в работе с помощью метода конечных разностей. Позже, при менее сильных предположе­ниях, существование и единственность были доказана в статье в пространстве L ¥ (0,T,H s (R 1)), где s>3/2, а в случае периодической задачи - в пространстве L ¥ (0,T,H ¥ (C))где С - окружность дли­ны, равной периоду, на русском языке эти результаты представлены в книге .

СОЛИТОН –это уединенная волна в средах различной физической природы, сохраняющая неизменной свою форму и скорость при распространении.От англ. solitary – уединенная (solitary wave – уединенная волна), «-он» – типичное окончание терминов такого рода (например, электрон, фотон, и т.д.), означающее подобие частицы.

Понятие солитон введено в 1965 американцами Норманом Забуски и Мартином Крускалом, но честь открытия солитона приписывают британскому инженеру Джону Скотту Расселу (1808–1882). В 1834 им впервые дано описание наблюдения солитона («большой уединенной волны»). В то время Рассел изучал пропускную способность канала Юнион близь Эдинбурга (Шотландия). Вот как сам автор открытия рассказывал о нем: «Я следил за движением баржи, которую быстро тянула по узкому каналу пара лошадей, когда баржа неожиданно остановилась; но масса воды, которую баржа привела в движение, не остановилась; вместо этого она собралась около носа судна в состоянии бешенного движения, затем неожиданно оставила его позади, катясь вперед с огромной скоростью и принимая форму большого одиночного возвышения, т.е. округлого, гладкого и четко выраженного водяного холма, который продолжал свой путь вдоль канала, нисколько не меняя своей формы и не снижая скорости. Я последовал за ним верхом, и когда я нагнал его, он по-прежнему катился вперед со скоростью приблизительно восемь или девять миль в час, сохранив свой первоначальный профиль возвышения длиной около тридцати футов и высотой от фута до фута с половиной. Его высота постепенно уменьшалась, и после одной или двух миль погони я потерял его в изгибах канала. Так в августе 1834 мне впервые довелось столкнуться с необычайным и красивым явлением, которое я назвал волной трансляции…».

Впоследствии Рассел экспериментальным путем, проведя ряд опытов, нашел зависимость скорости уединенной волны от ее высоты (максимальной высоты над уровнем свободной поверхности воды в канале).

Возможно, Рассел предвидел ту роль, которую играют солитоны в современной науке. В последние годы своей жизни он завершил книгу Волны трансляции в водном, воздушном и эфирном океанах , опубликованную посмертно в 1882. Эта книга содержит перепечатку Доклада о волнах – первое описание уединенной волны, и ряд догадок о строении материи. В частности, Рассел полагал, что звук есть уединенные волны (на самом деле это не так), иначе, по его мнению, распространение звука происходило бы с искажениями. Основываясь на этой гипотезе и используя найденную им зависимость скорости уединенной волны, Рассел нашел толщину атмосферы (5 миль). Более того, сделав предположение, что свет это тоже уединенные волны (что тоже не так), Рассел нашел и протяженность вселенной (5·10 17 миль).

По-видимому, в своих расчетах, относящихся к размерам вселенной, Рассел допустил ошибку. Тем не менее, результаты, полученные для атмосферы, оказались бы правильными, будь ее плотность равномерной. Расселовский же Доклад о волнах считается теперь примером ясности изложения научных результатов, ясности, до которой далеко многим сегодняшним ученым.

Реакция на научное сообщение Рассела наиболее авторитетных в то время английских механиков Джорджа Байделя Эйри (1801–1892) (профессора астрономии в Кембридже с 1828 по 1835, астронома королевского двора с 1835 по 1881) и Джорджа Габриэля Стокса (1819–1903) (профессора математики в Кембридже с 1849 по 1903) была отрицательной. Много лет спустя солитон был переоткрыт при совсем иных обстоятельствах. Интересно, что и воспроизвести наблюдение Рассела оказалось не просто. Участникам конференции «Солитон-82», съехавшимся в Эдинбург на конференцию, приуроченную к столетию со дня смерти Рассела и пытавшимся получить уединенную волну на том самом месте, где ее наблюдал Рассел, ничего увидеть не удалось, при всем их опыте и обширных знаниях о солитонах.

В 1871–1872 были опубликованы результаты французского ученого Жозефа Валентена Буссинеска (1842–1929), посвященных теоретическим исследованиям уединенных волн в каналах (подобных уединенной волне Рассела). Буссинеск получил уравнение:

Описывающее такие волны (u – смещение свободной поверхности воды в канале, d – глубина канала, c 0 – скорость волны, t – время, x – пространственная переменная, индекс соответствует дифференцированию по соответствующей переменной), и определил их форму (гиперболический секанс, см . рис. 1) и скорость.

Исследуемые волны Буссинеск называл вспучиваниями и рассмотрел вспучивания положительной и отрицательной высоты. Буссинеск обосновал устойчивость положительных вспучиваний тем, что их малые возмущения, возникнув, быстро затухают. В случае отрицательного вспучивания образование устойчивой формы волны невозможно, как и для длинного и положительного очень короткого вспучиваний. Несколько позже, в 1876, опубликовал результаты своих исследований англичанин лорд Рэлей.

Следующим важным этапом в развитии теории солитонов стала работа (1895) голландцев Дидерика Иоганна Кортевега (1848–1941) и его ученика Густава де Вриза (точные даты жизни не известны). По-видимому, ни Кортевег, ни де Вриз работ Буссинеска не читали. Ими было выведено уравнение для волн в достаточно широких каналах постоянного поперечного сечения, носящее ныне их имя – уравнение Кортевега-де Вриза (КдВ). Решение такого уравнения и описывает в свое время обнаруженную Расселом волну. Основные достижения этого исследования состояли в рассмотрении более простого уравнения, описывающего волны, бегущие в одном направлении, такие решения более наглядны. Из-за того, что в решение входит эллиптическая функция Якоби cn , эти решения были названы «кноидальными» волнами.

В нормальной форме уравнение КдВ для искомой функции и имеет вид:

Способность солитона сохранять при распространении свою форму неизменной объясняется тем, что поведение его определяется двумя действующими взаимно противоположно процессами. Во-первых, это, так называемое, нелинейное укручение (фронт волны достаточно большой амплитуды стремится опрокинуться на участках нарастания амплитуды, поскольку задние частицы, имеющие большую амплитуду, движутся быстрее впереди бегущих). Во-вторых, проявляется такой процесс как дисперсия (зависимость скорости волны от ее частоты, определяемая физическими и геометрическими свойствами среды; при дисперсии разные участки волны движутся с разными скоростями и волна расплывается). Таким образом, нелинейное укручение волны компенсируется ее расплыванием за счет дисперсии, что и обеспечивает сохранение формы такой волны при ее распространении.

Отсутствие вторичных волн при распространении солитона свидетельствует о том, что энергия волны не рассеивается по пространству, а сосредоточена в ограниченном пространстве (локализована). Локализация энергии есть отличительное качество частицы.

Еще одной удивительной особенностью солитонов (отмеченной еще Расселом) является их способность сохранять свои скорость и форму при прохождении друг через друга. Единственным напоминанием о состоявшемся взаимодействии являются постоянные смещения наблюдаемых солитонов от положений, которые они занимали бы, если бы не встретились. Есть мнение, что солитоны не проходят друг через друга, а отражаются подобно столкнувшимся упругим шарам. В этом также проявляется аналогия солитонов с частицами.

Долго считалось, что уединенные волны связаны только с волнами на воде и изучались они специалистами – гидродинамиками. В 1946 М.А.Лаврентьев (СССР), а в 1954 К.О.Фридрихс и Д.Г.Хайерс США опубликовали теоретические доказательства существования уединенных волн.

Современное развитие теории солитонов началось с 1955, когда была опубликована работа ученых из Лос Аламоса (США) – Энрико Ферми, Джона Пасты и Стена Улама, посвященная исследованию нелинейных дискретно нагруженных струн (такая модель использовалась для изучения теплопроводности твердых тел). Длинные волны, бегущие по таким струнам, оказались солитонами. Интересно, что методом исследования в этой работе стал численный эксперимент (расчеты на одной из первых созданных к этому времени ЭВМ).

Открытые теоретически первоначально для уравнений Буссинеска и КдВ, описывающих волны на мелкой воде, солитоны к настоящему времени найдены также как решения ряда уравнений в других областях механики и физики. Наиболее часто встречающимися являются (ниже во всех уравнениях u – искомые функции, коэффициенты при u – некоторые константы)

нелинейное уравнение Шредингера (НУШ)

Уравнение было получено при изучении оптической самофокусировки и расщепления оптических пучков. Это же уравнение применялось при исследовании волн на глубокой воде. Появилось обобщение НУШ для волновых процессов в плазме. Интересно применение НУШ в теории элементарных частиц.

Уравнение sin-Гордона (СГ)

описывающее, например, распространение резонансных ультракоротких оптических импульсов, дислокации в кристаллах, процессы в жидком гелии, волны зарядовой плотности в проводниках.

Солитонные решения имеют и так называемые, родственные КдВ уравнения. К таким уравнениям относятся,

модифицированное уравнение КдВ

уравнение Бенджамина, Бона и Магони (ББМ)

впервые появившееся при описании боры (волны на поверхности воды, возникающей при открывании ворот шлюзов, при «запирании» течения реки);

уравнение Бенджамина – Оно

полученное для волн внутри тонкого слоя неоднородной (стратифицированной) жидкости, расположенного внутри другой однородной жидкости. К уравнению Бенджамина – Оно приводит и исследованиее трансзвукового пограничного слоя.

К уравнениям с солитонными решениями относится и уравнение Борна – Инфельда

имеющее приложения в теории поля. Есть и другие уравнения с солитонными решениями.

Солитон, описываемый уравнением КдВ, однозначно характеризуется двумя параметрами: скоростью и положением максимума в фиксированный момент времени.

Солитон, описываемый уравнением Хироты

однозначно характеризуется четырьмя параметрами.

Начиная с 1960, на развитие теории солитонов повлиял ряд физических задач. Была предложена теория самоиндуцированной прозрачности и приведены экспериментальные результаты, ее подтверждающие.

В 1967 Крускалом и соавторами был найден метод получения точного решения уравнения КдВ – метод так называемой обратной задачи рассеяния. Суть метода обратной задачи рассеяния состоит в замене решаемого уравнения (например, уравнения КдВ) системой других, линейных уравнений, решение которых легко находится.

Этим же методом в 1971 советскими учеными В.Е.Захаровым и А.Б.Шабатом было решено НУШ.

Приложения солитонной теории в настоящее время находят применение при исследованиях линий передачи сигналов с нелинейными элементами (диоды, катушки сопротивления), пограничного слоя, атмосфер планет (Большое красное пятно Юпитера ), волн цунами, волновых процессов в плазме, в теории поля, физике твердого тела, теплофизике экстремальных состояний веществ, при изучении новых материалов (например, джозефсоновских контактов, состоящих из разделенных диэлектриком двух слоев сверхпроводящего металла), при создании моделей решеток кристаллов, в оптике, биологии и многих других. Высказано мнение, что бегущие по нервам импульсы – солитоны.

В настоящее время описаны разновидности солитонов и некоторые комбинаций из них, например:

антисолитон – солитон отрицательной амплитуды;

бризер (дублет) – пара солитон – антисолитон (рис. 2);

мультисолитон – несколько солитонов, движущихся как единое целое;

флюксон – квант магнитного потока, аналог солитона в распределенных джозефсоновских контактах;

кинк (монополь), от английского kink – перегиб.

Формально кинк можно ввести как решение уравнений КдВ, НУШ, СГ, описываемое гиперболическим тангенсом (рис. 3). Изменение знака решения типа «кинк» на противоположный дает «антикинк».

Кинки были обнаружены в 1962 англичанами Перрингом и Скирмом при численном (на ЭВМ) решении уравнения СГ. Таким образом, кинки были обнаружены раньше, чем появилось название солитон. Оказалось, что столкновение кинков не привело ни к их взаимному уничтожению, ни к последующему возникновению других волн: кинки, таким образом, проявили свойства солитонов, однако название кинк закрепилось за волнами такого рода.

Солитоны могут быть также двумерными и трехмерными. Изучение неодномерных солитонов осложнялось трудностями доказательства их устойчивости, однако в последнее время получены экспериментальные наблюдения неодномерных солитонов (например, подковообразные солитоны на пленке стекающей вязкой жидкости, изучавшиеся В.И.Петвиашвили и О.Ю.Цвелодубом). Двумерные солитонные решения имеет уравнение Кадомцева – Петвиашвили, используемое, например, для описания акустических (звуковых) волн:

Среди известных решений этого уравнения – нерасплывающиеся вихри или солитоны-вихри (вихревым является течение среды, при котором ее частицы имеют угловую скорость вращения относительно некоторой оси). Солитоны такого рода, найденные теоретически и смоделированные в лаборатории, могут самопроизвольно возникать в атмосферах планет. По своим свойствам и условиям существования солитон-вихрь подобен замечательной особенности атмосферы Юпитера – Большому Красному Пятну.

Солитоны являются существенно нелинейными образованиями и столь же фундаментальны, как линейные (слабые) волны (например, звук). Создание линейной теории, в значительной мере, трудами классиков Бернхарда Римана (1826–1866), Огюстена Коши (1789–1857), Жана Жозефа Фурье (1768–1830) позволило решить важные задачи, стоявшие перед естествознанием того времени. С помощью солитонов удается выяснить новые принципиальные вопросы при рассмотрении современных научных проблем.

Андрей Богданов

Солитоны бывают различной природы:

Математическая модель

Уравнение Кортевега - де Фриза

Одной из простейших и наиболее известных моделей, допускающих существование солитонов в решении, является уравнение Кортевега - де Фриза:

u_t - 6 u u_x + u_{xxx} = 0

Одним из возможных решений данного уравнения является уединённый солитон:

u(x,t) = - \frac{2\varkappa^2}{ \mathrm{ch}^2\,\varkappa(x-4\varkappa^2 t-\varphi) }

где 2\varkappa^2 - амплитуда солитона, \varphi - фаза. Эффективная ширина основания солитона равна \varkappa^{-1}. Такой солитон движется со скоростью v = 4\varkappa^2. Видно, что солитоны с большой амплитудой оказываются более узкими и движутся быстрее .

В более общем случае можно показать, что существует класс многосолитонных решений, таких что асимптотически при t\to \pm\infty решение распадается на несколько удалённых одиночных солитонов, движущихся с попарно различными скоростями. Общее N-солитонное решение можно записать в виде

u(x,t) = -2 \frac{d^2}{dx^2} \ln \det A(x,t)

где матрица A(x,t) даётся выражением

A_{nm} = \delta_{nm} + \frac{\beta_n}{\varkappa_n + \varkappa_m}\mathrm{e}^{8\varkappa_n^3 t -(\varkappa_n + \varkappa_m)x}

Здесь \beta_n, n=1,\dots,N и \varkappa_n>0, n=1,\dots,N - произвольные вещественные постоянные.

Замечательным свойством многосолитонных решений является безотражательность : при исследовании соответствующего одномерного уравнения Шрёдингера

-\partial^2_x\psi(x) + u(x)\psi(x) = E\psi(x)

с потенциалом u(x), убывающим на бесконечности быстрее чем |x|^{-1-\varepsilon}, коэффициент отражения равен 0 тогда и только тогда, когда потенциал есть некоторое многосолитонное решение уравнения КдФ в некоторый момент времени t.

Интерпретация солитонов как некоторых упруго взаимодействующих квазичастиц основана на следующем свойстве решений уравнения КдФ. Пусть при t\to -\infty решение имеет асимптотический вид N солитонов, тогда при t\to +\infty оно также имеет вид N солитонов с теми же самыми скоростями, но другими фазами, причём многочастичные эффекты взаимодействия полностью отсутствуют. Это означает, что полный сдвиг фазы k-го солитона равен

\Delta\varphi_k = \sum_{\stackrel{n=1}{n\ne k}}^{N} \Delta\varphi_{nk}

Пусть n-ый солитон движется быстрее, чем m-ый, тогда

\Delta\varphi^{+}_{n} = \Delta\varphi_{kn} = \frac{1}{\varkappa_n}\ln\left| \frac{\varkappa_n+\varkappa_m}{\varkappa_n-\varkappa_m} \right| \Delta\varphi^{-}_{k} = \Delta\varphi_{nk} = - \frac{1}{\varkappa_m}\ln\left| \frac{\varkappa_n+\varkappa_m}{\varkappa_n-\varkappa_m} \right|

то есть фаза более быстрого солитона при парном столкновении увеличивается на величину \Delta\varphi^{+}_{n}, а фаза более медленного - уменьшается на \Delta\varphi^{-}_{k}, причём полный сдвиг фазы солитона после взаимодействия равен сумме сдвигов фаз от попарного взаимодействия с каждым другим солитоном.

Нелинейное уравнение Шрёдингера

i u_t + u_{xx} + \nu \vert u \vert^2 u = 0

при значении параметра \nu > 0 допустимы уединённые волны в виде:

u \left(x,t \right) = \left(\sqrt{\frac{2 \alpha}{\nu} } \right) \mathrm{ch}^{-1} \left(\sqrt{\alpha}(x - Ut) \right) e^{i(r x-st)},

где r, s,\alpha,U - некоторые постоянные, связанные соотношениями:

U=2r s=r^2-\alpha

См. также

Напишите отзыв о статье "Солитон"

Примечания

  1. J.S.Russell «Report on Waves»: (Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), pp 311-390, Plates XLVII-LVII)
  2. J.S.Russell (1838), Report of the committee on waves, Report of the 7th Meeting of British Association for the Advancement of Science, John Murray, London, pp.417-496.
  3. Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М.: Мир, 1987, с.12.
  4. N.J.Zabusky and M.D.Kruskal (1965), Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys.Rev.Lett., 15 pp. 240-243.
  5. Дж. Л. Лэм. . - М .: Мир , 1983. - 294 с.
  6. А. Т. Филиппов. Многоликий солитон. - С. 40-42.
  7. А. Т. Филиппов. Многоликий солитон. - С. 227-23.
  8. - статья из Физической энциклопедии
  9. Vladimir Belinski, Enric Verdaguer. . - Cambridge University Press , 2001. - 258 с. - (Cambridge monographs on mathematical physics). - ISBN 0521805864 .
  10. Н. Н. Розанов // Природа . - 2007. - № 6 .
  11. А. Т. Филиппов. Многоликий солитон. - С. 241-246.
  12. А. И. Маймистов // Квантовая электроника . - 2010. - Т. 40 , № 9 . - С. 756-781 .
  13. Andrei I Maimistov (англ.) // Quantum Electronics . - 2010. - Vol. 40. - P. 756. - DOI :10.1070/QE2010v040n09ABEH014396 .
  14. Сазонов С. В. Оптические солитоны в средах из двухуровневых атомов // Научно-технический вестник информационных технологий, механики и оптики. 2013. Т. 5. № 87. С. 1-22.

Литература

  • Абловиц М., Сигур Х. Солитоны и метод обратной задачи. - М .: Мир, 1987. - 480 с.
  • Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. - М .: Мир, 1988. - 696 с.
  • Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П. Теория солитонов: Метод обратной задачи. - М .: Наука, 1980. - 320 с.
  • Инфельд Э., Роуландс Дж. Нелинейные волны, солитоны и хаос. - М .: Физматлит, 2006. - 480 с.
  • Лэм Дж. Л. Введение в теорию солитонов. - М .: Мир, 1983. - 294 с.
  • Ньюэлл А. Солитоны в математике и физике. - М .: Мир, 1989. - 328 с.
  • Самарский А. А., Попов Ю. П. Разностные методы решения задач газовой динамики. - М .: URSS, 2004. - 424 с.
  • Уизем Дж . Линейные и нелинейные волны. - М .: Мир, 1977. - 624 с.
  • Филиппов А. Т. Многоликий солитон // Библиотечка «Квант». - Изд. 2, перераб. и доп.. - М .: Наука, 1990. - 288 с.
  • Yaroslav V. Kartashov, Boris A. Malomed, Lluis Torner (англ.) // Reviews of Modern Physics . - 2011. - Vol. 83. - P. 247–306.
  • (англ.) // Physics . - 2013. - Vol. 6. - P. 15. - DOI :10.1103/Physics.6.15 .

Ссылки

Отрывок, характеризующий Солитон

– Французы оставили левый берег?
– Как доносили лазутчики, в ночь на плотах переправились последние.
– Достаточно ли фуража в Кремсе?
– Фураж не был доставлен в том количестве…
Император перебил его.
– В котором часу убит генерал Шмит?…
– В семь часов, кажется.
– В 7 часов. Очень печально! Очень печально!
Император сказал, что он благодарит, и поклонился. Князь Андрей вышел и тотчас же со всех сторон был окружен придворными. Со всех сторон глядели на него ласковые глаза и слышались ласковые слова. Вчерашний флигель адъютант делал ему упреки, зачем он не остановился во дворце, и предлагал ему свой дом. Военный министр подошел, поздравляя его с орденом Марии Терезии З й степени, которым жаловал его император. Камергер императрицы приглашал его к ее величеству. Эрцгерцогиня тоже желала его видеть. Он не знал, кому отвечать, и несколько секунд собирался с мыслями. Русский посланник взял его за плечо, отвел к окну и стал говорить с ним.
Вопреки словам Билибина, известие, привезенное им, было принято радостно. Назначено было благодарственное молебствие. Кутузов был награжден Марией Терезией большого креста, и вся армия получила награды. Болконский получал приглашения со всех сторон и всё утро должен был делать визиты главным сановникам Австрии. Окончив свои визиты в пятом часу вечера, мысленно сочиняя письмо отцу о сражении и о своей поездке в Брюнн, князь Андрей возвращался домой к Билибину. У крыльца дома, занимаемого Билибиным, стояла до половины уложенная вещами бричка, и Франц, слуга Билибина, с трудом таща чемодан, вышел из двери.
Прежде чем ехать к Билибину, князь Андрей поехал в книжную лавку запастись на поход книгами и засиделся в лавке.
– Что такое? – спросил Болконский.
– Ach, Erlaucht? – сказал Франц, с трудом взваливая чемодан в бричку. – Wir ziehen noch weiter. Der Bosewicht ist schon wieder hinter uns her! [Ах, ваше сиятельство! Мы отправляемся еще далее. Злодей уж опять за нами по пятам.]
– Что такое? Что? – спрашивал князь Андрей.
Билибин вышел навстречу Болконскому. На всегда спокойном лице Билибина было волнение.
– Non, non, avouez que c"est charmant, – говорил он, – cette histoire du pont de Thabor (мост в Вене). Ils l"ont passe sans coup ferir. [Нет, нет, признайтесь, что это прелесть, эта история с Таборским мостом. Они перешли его без сопротивления.]
Князь Андрей ничего не понимал.
– Да откуда же вы, что вы не знаете того, что уже знают все кучера в городе?
– Я от эрцгерцогини. Там я ничего не слыхал.
– И не видали, что везде укладываются?
– Не видал… Да в чем дело? – нетерпеливо спросил князь Андрей.
– В чем дело? Дело в том, что французы перешли мост, который защищает Ауэсперг, и мост не взорвали, так что Мюрат бежит теперь по дороге к Брюнну, и нынче завтра они будут здесь.
– Как здесь? Да как же не взорвали мост, когда он минирован?
– А это я у вас спрашиваю. Этого никто, и сам Бонапарте, не знает.
Болконский пожал плечами.
– Но ежели мост перейден, значит, и армия погибла: она будет отрезана, – сказал он.
– В этом то и штука, – отвечал Билибин. – Слушайте. Вступают французы в Вену, как я вам говорил. Всё очень хорошо. На другой день, то есть вчера, господа маршалы: Мюрат Ланн и Бельяр, садятся верхом и отправляются на мост. (Заметьте, все трое гасконцы.) Господа, – говорит один, – вы знаете, что Таборский мост минирован и контраминирован, и что перед ним грозный tete de pont и пятнадцать тысяч войска, которому велено взорвать мост и нас не пускать. Но нашему государю императору Наполеону будет приятно, ежели мы возьмем этот мост. Проедемте втроем и возьмем этот мост. – Поедемте, говорят другие; и они отправляются и берут мост, переходят его и теперь со всею армией по сю сторону Дуная направляются на нас, на вас и на ваши сообщения.
– Полноте шутить, – грустно и серьезно сказал князь Андрей.
Известие это было горестно и вместе с тем приятно князю Андрею.
Как только он узнал, что русская армия находится в таком безнадежном положении, ему пришло в голову, что ему то именно предназначено вывести русскую армию из этого положения, что вот он, тот Тулон, который выведет его из рядов неизвестных офицеров и откроет ему первый путь к славе! Слушая Билибина, он соображал уже, как, приехав к армии, он на военном совете подаст мнение, которое одно спасет армию, и как ему одному будет поручено исполнение этого плана.
– Полноте шутить, – сказал он.
– Не шучу, – продолжал Билибин, – ничего нет справедливее и печальнее. Господа эти приезжают на мост одни и поднимают белые платки; уверяют, что перемирие, и что они, маршалы, едут для переговоров с князем Ауэрспергом. Дежурный офицер пускает их в tete de pont. [мостовое укрепление.] Они рассказывают ему тысячу гасконских глупостей: говорят, что война кончена, что император Франц назначил свидание Бонапарту, что они желают видеть князя Ауэрсперга, и тысячу гасконад и проч. Офицер посылает за Ауэрспергом; господа эти обнимают офицеров, шутят, садятся на пушки, а между тем французский баталион незамеченный входит на мост, сбрасывает мешки с горючими веществами в воду и подходит к tete de pont. Наконец, является сам генерал лейтенант, наш милый князь Ауэрсперг фон Маутерн. «Милый неприятель! Цвет австрийского воинства, герой турецких войн! Вражда кончена, мы можем подать друг другу руку… император Наполеон сгорает желанием узнать князя Ауэрсперга». Одним словом, эти господа, не даром гасконцы, так забрасывают Ауэрсперга прекрасными словами, он так прельщен своею столь быстро установившеюся интимностью с французскими маршалами, так ослеплен видом мантии и страусовых перьев Мюрата, qu"il n"y voit que du feu, et oubl celui qu"il devait faire faire sur l"ennemi. [Что он видит только их огонь и забывает о своем, о том, который он обязан был открыть против неприятеля.] (Несмотря на живость своей речи, Билибин не забыл приостановиться после этого mot, чтобы дать время оценить его.) Французский баталион вбегает в tete de pont, заколачивают пушки, и мост взят. Нет, но что лучше всего, – продолжал он, успокоиваясь в своем волнении прелестью собственного рассказа, – это то, что сержант, приставленный к той пушке, по сигналу которой должно было зажигать мины и взрывать мост, сержант этот, увидав, что французские войска бегут на мост, хотел уже стрелять, но Ланн отвел его руку. Сержант, который, видно, был умнее своего генерала, подходит к Ауэрспергу и говорит: «Князь, вас обманывают, вот французы!» Мюрат видит, что дело проиграно, ежели дать говорить сержанту. Он с удивлением (настоящий гасконец) обращается к Ауэрспергу: «Я не узнаю столь хваленую в мире австрийскую дисциплину, – говорит он, – и вы позволяете так говорить с вами низшему чину!» C"est genial. Le prince d"Auersperg se pique d"honneur et fait mettre le sergent aux arrets. Non, mais avouez que c"est charmant toute cette histoire du pont de Thabor. Ce n"est ni betise, ni lachete… [Это гениально. Князь Ауэрсперг оскорбляется и приказывает арестовать сержанта. Нет, признайтесь, что это прелесть, вся эта история с мостом. Это не то что глупость, не то что подлость…]
– С"est trahison peut etre, [Быть может, измена,] – сказал князь Андрей, живо воображая себе серые шинели, раны, пороховой дым, звуки пальбы и славу, которая ожидает его.
– Non plus. Cela met la cour dans de trop mauvais draps, – продолжал Билибин. – Ce n"est ni trahison, ni lachete, ni betise; c"est comme a Ulm… – Он как будто задумался, отыскивая выражение: – c"est… c"est du Mack. Nous sommes mackes , [Также нет. Это ставит двор в самое нелепое положение; это ни измена, ни подлость, ни глупость; это как при Ульме, это… это Маковщина. Мы обмаковались. ] – заключил он, чувствуя, что он сказал un mot, и свежее mot, такое mot, которое будет повторяться.
Собранные до тех пор складки на лбу быстро распустились в знак удовольствия, и он, слегка улыбаясь, стал рассматривать свои ногти.
Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png