Предложенный способо основан на следующем:

  1. Электронная связь между атомами водорода и кислорода ослабевает пропорционально повышению температуры воды. Это подтверждается практикой при сжигании сухого каменного угля. Перед тем как сжигать сухой уголь, его поливают водой. Мокрый уголь дает больше тепла, лучше горит. Это происходит от того, что при высокой температуре горения угля вода распадается на водород и кислород. Водород сгорает и дает дополнительные калории углю, а кислород увеличивает объем кислорода воздуха в топке, что способствует лучшему и полному сгоранию угля.
  2. Температура воспламенения водорода от 580 до 590 o C , разложение воды должно быть ниже порога зажигания водорода.
  3. Электронная связь между атомами водорода и кислорода при температуре 550 o C еще достаточна для образования молекул воды, но орбиты электронов уже искажены, связь с атомами водорода и кислорода ослаблена. Для того, чтобы электроны сошли со своих орбит и атомная связь между ними распалась, нужно электронам добавить еще энергии, но уже не тепла, а энергию электрического поля высокого напряжения. Тогда потенциальная энергия электрического поля преобразуется в кинетическую энергию электрона. Скорость электронов в электрическом поле постоянного тока возрастает пропорционально квадратному корню напряжения, приложенного к электродам.
  4. Разложение перегретого пара в электрическом поле может происходить при небольшой скорости пара, а такую скорость пара при температуре 550 o C можно получить только в незамкнутом пространстве.
  5. Для получения водорода и кислорода в больших количествах нужно использовать закон сохранения материи. Из этого закона следует: в каком количестве была разложена вода на водород и кислород, в таком же количестве получим воду при окислении этих газов.

Возможность осуществления изобретения подтверждается примерами, осуществляемыми в трех вариантах установок .

Все три варианта установок изготавливаются из одинаковых, унифицированных изделий цилиндрической формы из стальных труб.

Первый вариант
Работа и устройство установки первого варианта (схема 1 )

Во всех трех вариантах работа установок начинается с приготовления перегретого пара в незамкнутом пространстве с температурой пара 550 o C. Незамкнутое пространство обеспечивает скорость по контуру разложения пара до 2 м/с .

Приготовление перегретого пара происходит в стальной трубе из жаропрочной стали /стартер/, диаметр и длина которого зависит от мощности установки. Мощность установки определяет количество разлагаемой воды, литров/с.

Один литр воды содержит 124 л водорода и 622 л кислорода , в пересчете на калории составляет 329 ккал .

Перед пуском установки стартер разогревается от 800 до 1000 o C /разогрев производится любым способом/.

Один конец стартера заглушен фланцем, через который поступает дозированная вода для разложения на рассчитанную мощность. Вода в стартере нагревается до 550 o C , свободно выходит из другого конца стартера и поступает в камеру разложения, с которой стартер соединен фланцами.

В камере разложения перегретый пар разлагается на водород и кислород электрическим полем, создаваемым положительным и отрицательным электродами, на которые подается постоянный ток с напряжением 6000 В . Положительным электродом служит сам корпус камеры /труба/, а отрицательным электродом служит труба из тонкостенной стали, смонтированная по центру корпуса, по всей поверхности которой имеются отверстия диаметром по 20 мм .

Труба — электрод представляет собой сетку, которая не должна создавать сопротивление для входа в электрод водорода. Электрод крепится к корпусу трубы на проходных изоляторах и по этому же креплению подается высокое напряжение. Конец трубы отрицательного электрода оканчивается электроизоляционной и термостойкой трубой для выхода водорода через фланец камеры. Выход кислорода из корпуса камеры разложения через стальной патрубок. Положительный электрод /корпус камеры/ должен быть заземлен и заземлен положительный полюс у источника питания постоянного тока.

Выход водорода по отношению к кислороду 1:5 .

Второй вариант
Работа и устройство установки по второму варианту (схема 2 )

Установка второго варианта предназначена для получения большого количества водорода и кислорода за счет параллельного разложения большого количества воды и, окисления газов в котлах для получения рабочего пара высокого давления для электростанций, работающих на водороде /в дальнейшем ВЭС /.

Работа установки, как и в первом варианте, начинается с приготовления перегретого пара в стартере. Но этот стартер отличается от стартера в 1-м варианте. Отличие заключается в том, что на конце стартера приварен отвод, в котором смонтирован переключатель пара, имеющий два положения — «пуск» и «работа».

Полученный в стартере пар поступает в теплообменник, который предназначен для корректировки температуры восстановленной воды после окисления в котле /К1 / до 550 o C . Теплообменник /То / — труба, как и все изделия с таким же диаметром. Между фланцами трубы вмонтированы трубки из жаропрочной стали, по которым проходит перегретый пар. Трубки обтекаются водой из замкнутой системы охлаждения.

Из теплообменника перегретый пар поступает в камеру разложения, точно такую же, как и в первом варианте установки.

Водород и кислород из камеры разложения поступают в горелку котла 1, в которой водород поджигается зажигалкой, — образуется факел. Факел, обтекая котел 1, создает в нем рабочий пар высокого давления. Хвост факела из котла 1 поступает в котел 2 и своим теплом в котле 2 подготавливает пар для котла 1. Начинается непрерывное окисление газов по всему контуру котлов по известной формуле:

2H 2 + O 2 = 2H 2 O + тепло

В результате окисления газов восстанавливается вода и выделяется тепло. Это тепло в установке собирают котлы 1 и котлы 2, превращая это тепло в рабочий пар высокого давления. А восстановленная вода с высокой температурой поступает в следующий теплообменник, из него в следующую камеру разложения. Такая последовательность перехода воды из одного состояния в другое продолжается столько раз, сколько требуется получить от этого собранного тепла энергии в виде рабочего пара для обеспечения проектной мощности ВЭС .

После того, как первая порция перегретого пара обойдет все изделия, даст контуру расчетную энергию и выйдет из последнего в контуре котла 2, перегретый пар по трубе направляется в переключатель пара, смонтированный на стартере. Переключатель пара из положения «пуск» переводится в положение «работа», после чего он попадает в стартер. Стартер отключается /вода, разогрев/. Из стартера перегретый пар поступает в первый теплообменник, а из него в камеру разложения. Начинается новый виток перегретого пара по контуру. С этого момента контур разложения и плазмы замкнут сам на себя.

Вода установкой расходуется только на образование рабочего пара высокого давления, которая берется из обратки контура отработанного пара после турбины.

Недостаток силовых установок для ВЭС — это их громоздкость. Например, для ВЭС на 250 МВт нужно разлагать одновременно 455 л воды в одну секунду, а для этого потребуется 227 камер разложения, 227 теплообменников, 227 котлов /К1 /, 227 котлов /К2 /. Но такая громоздкость стократ будет оправдана уже только тем, что топливом для ВЭС будет только вода, не говоря уже о экологической чистоте ВЭС , дешевой электрической энергии и тепле.

Третий вариант
3-й вариант силовой установки (схема 3 )

Это точно такая же силовая установка, как и вторая.

Разница между ними в том, что эта установка работает постоянно от стартера, контур разложения пара и сжигания водорода в кислороде не замкнут сам на себя. Конечным изделием в установке будет теплообменник с камерой разложения. Такая компоновка изделий позволит получать кроме электрической энергии и тепла, еще водород и кислород или водород и озон. Силовая установка на 250 МВт при работе от стартера будет расходовать энергию на разогрев стартера, воду 7,2 м 3 /ч и воду на образование рабочего пара 1620 м 3 /ч/вода используется из обратного контура отработанного пара/. В силовой установке для ВЭС температура воды 550 o C . Давление пара 250 ат . Расход энергии на создание электрического поля на одну камеру разложения ориентировочно составит 3600 кВт/ч .

Силовая установка на 250 МВт при размещении изделий на четырех этажах займет площадь 114 х 20 м и высоту 10 м . Не учитывая площадь под турбину, генератор и трансформатор на 250 кВА — 380 х 6000 В .

ИЗОБРЕТЕНИЕ ИМЕЕТ СЛЕДУЮЩИЕ ПРЕИМУЩЕСТВА

  1. Тепло, полученное при окислении газов, можно использовать непосредственно на месте, причем водород и кислород получаются при утилизации отработанного пара и технической воды.
  2. Небольшой расход воды при получении электроэнергии и тепла.
  3. Простота способа.
  4. Значительная экономия энергии, т.к. она затрачивается только на разогрев стартера до установившегося теплового режима.
  5. Высокая производительность процесса, т.к. диссоциация молекул воды длится десятые доли секунды.
  6. Взрыво- и пожаробезопасность способа, т.к. при его осуществлении нет необходимости в емкостях для сбора водорода и кислорода.
  7. В процессе работы установки вода многократно очищается, преобразуясь в дистиллированную. Это исключает осадки и накипь, что увеличивает срок службы установки.
  8. Установка изготавливается из обычной стали; за исключением котлов, изготавливаемых из жаропрочных сталей с футеровкой и экранированием их стенок. То есть не требуются специальные дорогие материалы.

Изобретение может найти применение в промышленности путем замены углеводородного и ядерного топлива в силовых установках на дешевое, распространенное и экологически чистое — воду при сохранении мощности этих установок.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения водорода и кислорода из пара воды , включающий пропускание этого пара через электрическое поле, отличающийся тем, что используют перегретый пар воды с температурой 500 — 550 o C , пропускаемый через электрическое поле постоянного тока высокого напряжения для диссоциации пара и разделения его на атомы водорода и кислорода.

Изобретение относится к водородной энергетике. Техническим результатом изобретения является получение водорода за счет разложения воды. Согласно изобретению способ получения водорода из воды включает разложение воды под действием электрического поля с помощью водяного коаксиального конденсатора с изолированными обкладками, на которые подается высоковольтное выпрямленное напряжение импульсной формы, при этом разложение воды на кислород и водород происходит под действием резонансного электромагнитного поля, частота n-ой гармоники которого приближается к собственной частоте воды, причем энергия разложения воды складывается из тепловой и минимально расходуемой электрической энергии разложения воды. Патентуется также устройство для реализации заявленного способа. 2 н. и 1 з.п. ф-лы, 1 ил.

Рисунки к патенту РФ 2456377

Изобретение относится к технике получения водорода из воды (водородной энергетике) электролизом и может быть использовано в качестве узла для преобразования тепловой энергии, при сжигании водорода, в механическую.

Известен двигатель Стенли Мейера, работающий на водороде, который получается из воды путем ее электролитического разложения (патент США № 5149507). Это устройство содержит две пары коаксиально расположенных электрода, размещенных в воде, причем у одной пары отсутствует контакт с водой. На изолированные электроды подается высокое напряжение не выше 10 кВ и частотой 15-260 кГц. На остальные электроды для нейтрализации атомов водорода и кислорода подается постоянное низковольтное напряжение.

Исходя из физического принципа обратимости энергии для получения из воды, например, кубометра водорода (при 0°С и 101,3 кПа), необходимо затратить 10,8 мДж/м 3 или 2580 ккал/м 3 энергии, т.е. столько же, сколько выделяется при сжигании водорода при тех же условиях. Это значит, что при сжигании кубометра водорода получим 2580 ккал/сек. В устройстве Мейлера выделяется за секунду не более 710 кал, т.е. в 3600 раз меньше.

Известно, что резонансная (собственная) частота воды (50,8 и 51,3) 10 ГГц, поэтому резонанс воды будет происходить, если возмущающее воздействие будет иметь указанную частоту, что никак не согласуется с представленной Меером электросхемой.

Кроме того, устройство Мейлера не обеспечивает условия поглощения тепла как из окружающей среды, так и от других источников тепла, например, из самой воды, на компенсацию эндотермического эффекта реакции разложения воды.

Целью изобретения является повышение производительности, КПД, экономической целесообразности.

Для получения указанных целей необходимо увеличение энергетической мощности для совершения полезной работы при условии работы электросхемы в режиме резонанса или максимально к ней приближенной. Допустим, что мы имеем несинусоидальное напряжение питания, представляющее собой двухполупериодное выпрямленное синусоидальное напряжение. Тогда условие резонанса на к-ой гармонической составляющей запишется в виде

Х LK =K L=N 2 AKµa /L=X CK =1/K ·C=d/KAa .

В нашем случае (51)10 ГГц - резонансная частота воды, значит, для к-ой гармоники K =(51)10 ГГц, откуда =(51)10 ГГц/K.

Откуда частота питающего напряжения к-ой гармоники может быть снижена в к раз, однако она остается достаточно высокой. Для увеличения входной частоты можно использовать способ ее увеличения за счет сложения частот от нескольких питающих напряжений, соединенных параллельно резонансным контуром при условии не совпадения амплитуд входных напряжений, что достигается сдвигом их фаз на угол, удовлетворяющий первому условию. Следует отметить, что индуктивность, также как и емкость резонансного контура, с целью обеспечения наибольшего поверхностного контакта с водой может состоять из параллельного, последовательного или смешанного соединения элементов, что обеспечивает равномерность передачи удельной энергии по всему объему, и в свою очередь с увеличением объема устройства создаются условия для увеличения производительности выделения газов за счет увеличенной подачи тепловой и электрической энергий. Примем, что, например, при сжигании 1 литра водорода выделяется К калорий тепла за доли секунды. Количество образовавшейся воды составит примерно 0.001 литра. Эти параметры соответствуют границе перехода ГА3-ВОДА и ВОДА-ГАЗ, т.е. они обратимы. Это значит, чтобы разложить 0.001 литра воды без затрат электроэнергии, надо равномерно распылить ее в объеме 1 литр и сообщить К калорий тепла с плюсом на потери за то же время. Как видим, соотношение в затратах электрической и тепловой энергий для разложения воды зависит от многих параметров и требует экспериментального исследования. При стремлении к минимальному расходу электроэнергии требуется ужесточение энергетических тепловых параметров, например, невозможность создания высокого давления или требуемой тепловой мощности при той же предполагаемой производительности, требует эквивалентной компенсации недостающей тепловой энергии энергией электромагнитного поля. Известно, что уменьшение энергии электрического поля при резонансе сопровождается увеличением энергии магнитного поля и наоборот, т.е.: W=Wm+Wэ=L1/2=CU/2=CONST. Поэтому, чтобы не терять половину энергии, индуктивность размещаем внутри водяного конденсатора. Таким образом на молекулы воды действуют две резонансные направленные под углом 90 градусов силы от электрического и магнитного полей, которые, используя тепловую энергию, расщепляют молекулу воды на водород и кислород. При одновременном действии этих сил требуется смещение, например, фазы магнитного поля относительно электрического на 90 градусов, которое может быть достигнуто с помощью фазосдвигающих устройств.

Подвод тепловой энергии для компенсации эндотермического эффекта при разложении воды происходит за счет циркуляции воды (например, насосом) по замкнутому контуру, через устройство разложения воды, теплоприемником и устройством восполнения потерь воды при разложении. Теплоприемник - это устройство с развитой поверхностью, обогреваемой солнцем, или (и) обеспечивает впрыск в холодную воду продуктов сгорания, например, от водородного двигателя, тем самым замыкая процесс и значительно повышая КПД. Устройство предлагаемого контура повышает экономичность промышленного производства, позволяет использовать его как в устройствах промышленной энергетики, так и автомобильно-железнодорожном транспорте. При создании нескольких параллельных контуров создается возможность отбирать тепловую энергию от многих источников.

Способ получения водорода из воды включает разложение воды под действием электрического поля с помощью водяного коаксиального конденсатора с изолированными обкладками, на которые подается высоковольтное выпрямленное напряжение импульсной формы, разложение воды на кислород и водород происходит под действием резонансного электромагнитного поля n-гармоники, которая приближается к собственной частоте воды, причем энергия разложения воды складывается из тепловой и минимально расходуемой электрической энергии разложения воды.

В устройстве для получения водорода из воды между обкладками конденсатора размещена индуктивность, обеспечивающая разделение и перемещение кислорода и водорода по выходным не сообщающимся друг с другом отверстиям, причем нейтрализация газов происходит с помощью токопроводящих сеток, установленных на выходе отверстий, которые связаны с источником постоянного напряжения, а подача тепловой энергии происходит по замкнутым параллельным контурам, каждый из которых связан с источником посторонней тепловой энергии, причем теплоносителем является вода, циркулирующая с помощью насоса с изменяющейся производительностью, при этом индуктивность и емкость резонансного контура состоит из параллельных, последовательных и смешанных электрических соединений элементов.

На фиг. представлено устройство, реализующее предлагаемый способ. Устройство содержит корпус 5, выполненный способом литья под давлением, например, из теплостойкого сополимера, диэлектрическая проницаемость которого доходит до 100000 единиц, имеет горизонтальные каналы, обеспечивающие вход-выход воды, которые соединяются с коаксиально расположенными каналами, в перегородках которых залиты обкладки конденсатора 1 и обмотки индуктивности 2. Коаксиальные каналы вертикальными отверстиями, по ходу магнитных силовых линий индуктивностей 2, связаны с выходными газовыми отверстиями, имеющими металлические сетки 4, на которые подается постоянное напряжение, обеспечивающее нейтрализацию ионов водорода и кислорода. Клапаны 3 обеспечивают выход газов при незначительном избыточном давлении.

Устройство работает следующим образом. При подаче высокочастотного высоковольтного напряжения на элементы 1, 2 последовательного резонансного контура и заполнения каналов циркуляционной нагретой водой, за счет электрической и тепловой энергий происходит разложение воды на ионы кислорода и водорода. Под действием магнитного поля индуктивности 2 ионы кислорода и водорода разделяются в пространстве магнитного поля и каждый газ раздельно по своим каналам проходит через металлические сетки 4, где нейтрализуется и через клапана 3 нейтральные газы поступают по своему назначению.

Преимущество устройства в сравнении с прототипом то, что вода одновременно является носителем тепловой энергии. Увеличение электрической энергии на единицу объема воды в результате развитой контактной поверхности емкостных пластин с водой приводит к увеличению производительности и эффективности работы устройства. Размещение индуктивности в устройстве приводит к увеличению производительности и КПД устройства. Устройство производит разделение газов (водорода и кислорода). При изменении скорости воды создается возможность изменять производительность.

Наша планета купается в потоке тепловой энергии, поступающей от Солнца, из земных недр и от хозяйственной деятельности человека. Человек в недостаточной степени осваивает эту энергию, поэтому данное изобретение направлено на освоение дармовой указанной выше энергии.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения водорода из воды, включающий разложение воды под действием электрического поля с помощью водяного коаксиального конденсатора с изолированными обкладками, на которые подается высоковольтное выпрямленное напряжение импульсной формы, отличающийся тем, что разложение воды на кислород и водород происходит под действием резонансного электромагнитного поля, частота n-й гармоники которого приближается к собственной частоте воды, причем энергия разложения воды складывается из тепловой и минимально расходуемой электрической энергии разложения воды.

2. Устройство, отличающееся тем, что между обкладками конденсатора размещена индуктивность, обеспечивающая разделение и перемещение кислорода и водорода по выходным несообщающимся друг с другом отверстиям, причем нейтрализация газов происходит с помощью токопроводящих сеток, установленных на выходе отверстий, которые связаны с источником постоянного напряжения, а подача тепловой энергии происходит по замкнутым параллельным контурам, каждый из которых связан с источником посторонней тепловой энергии, причем теплоносителем является вода, циркулирующая с помощью насоса с изменяющейся производительностью.

3. Устройство по п.2, отличающееся тем, что индуктивность и емкость резонансного контура состоит из параллельных, последовательных и смешанных электрических соединений элементов.

В данной статье поговорим про разрыв молекул воды и Закон сохранения энергии. В конце статьи эксперимент для дома.

Нет никакого смысла изобретать установки и устройства по разложению молекул воды на водород и кислород не учитывая Закон сохранения энергии. Предполагается, что возможно создать такую установку, которая на разложение воды будет затрачивать меньшее количество энергии, чем та энергия, которая выделяется в процессе сгорания (соединения в молекулу воды). В идеале, структурно, схема разложения воды и соединение кислорода и водорода в молекулу будет иметь циклический (повторяющийся) вид.

Изначально, имеется химическое соединение – вода (H 2 O). Для её разложения на составляющие – водород (Н) и кислород (О) необходимо приложить определённое количество энергии. Практически, источником этой энергии может быть аккумуляторная батарея автомобиля. В результате разложения воды образуется газ, состоящий в основном из молекул водорода (Н) и кислорода (О). Одни, называют его «Газ Брауна», другие говорят, что выделяющийся газ, ничего не имеет общего с Газом Брауна. Думаю, нет необходимости рассуждать и доказывать, как называется этот газ, ведь это не важно, пускай этим занимаются философы.

Газ, вместо бензина поступает в цилиндры двигателя внутреннего сгорания, где посредством искры от свечей системы зажигания воспламеняется. Происходит химическое соединение водорода и кислорода в воду, сопровождаемое резким выделением энергии взрыва, заставляющего двигатель работать. Вода, образованная в процессе химического соединения, выпускается из цилиндров двигателя в виде пара через выпускной коллектор.

Важным моментом является возможность повторного использования воды для процесса разложения на составляющие – водород (Н) и кислород (О), образованной в результате сгорания в двигателе. Ещё раз посмотрим на «цикл» круговорота воды и энергии. На разрыв воды, которая находится в устойчивом химическом соединении, затрачивается определённое количество энергии. В результате сгорания, наоборот выделяется определённое количество энергии. Выделяемая энергия может быть грубо рассчитана на «молекулярном» уровне. Из-за особенностей оборудования, затрачиваемую на разрыв энергию рассчитать сложнее, её проще измерить. Если пренебречь качественными характеристиками оборудования, потерями энергии на нагрев, и другими немаловажными показателями, то в результате расчётов и измерений, если они проведены правильно, окажется, что затраченная и выделенная энергии равны друг другу. Это подтверждает Закон сохранения энергии, который утверждает, что энергия никуда не пропадает и не появляется «из пустоты», она лишь переходит в другое состояние. Но мы хотим использовать воду как источник дополнительной «полезной» энергии. Откуда эта энергия вообще может взяться? Энергия тратится не только на разложение воды, но и на потери, учитывающие КПД установки по разложению и КПД двигателя. А мы хотим получить «круговорот», в котором энергии больше выделяется, чем затрачивается.

Я не привожу здесь конкретные цифры, учитывающие затраты и выработку энергии. Один из посетителей моего сайта прислал мне на Майл книгу Канарёва, за что я ему очень благодарен, в которой популярно разложены «подсчёты» энергии. Книга является очень полезной, и пара последующих статей моего сайта будет посвящена именно исследованиям Канарёва. Некоторые посетители моего сайта утверждают, что я своими статьями противоречу молекулярной физике, поэтому в своих последующих статьях я приведу на мой взгляд — основные результаты исследований молекулярщика — Канарёва, которые моей теории не противоречат, а даже наоборот подтверждают моё представление о возможности низкоамперного разложения воды.

Если считать, что вода, используемая для разложения – это самое устойчивое, конечное химическое соединение, и её химические и физические свойства такие же, как у воды, высвобождаемой в виде пара из коллектора двигателя внутреннего сгорания, то какими производительными установки по разложению не были, нет смысла пытаться получать дополнительную энергию из воды. Это противоречит Закону сохранения энергии. И тогда, все попытки использовать воду в качестве источника энергии — бесполезны, а все статьи и публикации на эту тему не более чем заблуждения людей, или просто — обман.

Любое химическое соединение при определённых условиях распадается или соединяется вновь. Условием для этого может служить физическая среда, в которой находится это соединение – температура, давление, освещённость, электрическое, или магнитное воздействие, либо наличие катализаторов, других химических веществ, или соединений. Воду можно назвать аномальным химическим соединением, обладающую свойствами, не присущими всем остальным химическим соединениям. К этим свойствам (в том числе) относятся реакции на изменения температуры, давления, электрического тока. В естественных Земных условиях, вода – устойчивое и «конечное» химическое соединение. В этих условиях имеется определённая температура, давление, отсутствует какое либо магнитное, или электрическое поле. Существует много попыток и вариантов изменить эти естественные условия для того, чтобы разложить воду. Из них, наиболее привлекательно выглядит разложение посредством воздействия электрического тока. Полярная связь атомов в молекулах воды настолько сильна, что можно пренебречь магнитным полем Земли, которое не оказывает никакого влияния на молекулы воды.

Небольшое отступление от темы:

Есть предположение определённых деятелей науки, что Пирамиды Хеопса не что иное, как огромные установки для концентрации энергии Земли, которую неизвестная нам цивилизация использовала для разложения воды. Узкие наклонные тоннели в Пирамиде, назначение которых до настоящего времени не раскрыто, могли использоваться для движения воды и газов. Вот такое «фантастическое» отступление.

Продолжим. Если воду поместить в поле мощного постоянного магнита, ничего не произойдёт, связь атомов будет по-прежнему сильнее этого поля. Электрическое поле, образованное мощным источником электрического тока, приложенное к воде посредством электродов, погруженных в воду, вызывает электролиз воды (разложение на водород и кислород). При этом, затраты энергии источника тока огромны — не сопоставимы с энергией, которую можно получить от обратного процесса соединения. Здесь и возникает задача минимизировать затраты энергии, но для этого необходимо понять как происходит процесс разрыва молекул и на чём можно «сэкономить».

Для того, чтобы верить в возможность использования воды, как источника энергии мы должны «оперировать» не только на уровне единичных молекул воды, а так же на уровне соединения большого числа молекул за счёт их взаимного притяжения и дипольного ориентирования. Мы должны учитывать межмолекулярные взаимодействия. Возникает резонный вопрос: Почему? А потому, что перед разрывом молекул необходимо их сначала сориентировать. Это, так же является ответом на вопрос «Почему в обычной электролизёрной установке используется постоянный электрический ток, а переменный – не работает?».

В соответствии с кластерной теорией, молекулы воды имеют положительные и отрицательные магнитные полюса. Вода в жидком состоянии имеет не плотную структуру, поэтому молекулы в ней, притягиваясь разноимёнными полюсами и отталкиваясь одноимёнными, взаимодействуют друг с другом, образуя кластеры. Если для воды, находящейся в жидком состоянии, представить оси координат и попытаться определить в каком направлении этих координат больше ориентированных молекул, у нас ничего не получится, потому что ориентация молекул воды без дополнительного внешнего воздействия — хаотична.

Область деятельности(техники), к которой относится описываемое изобретение

Изобретение относится к технике получения водорода из воды электролизом и может быть использовано в качестве узла для преобразования тепловой энергии, при сжигании водорода, в механическую.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Известен опытный эксперимент проведенный ученым-экспериментатором Валерием Дудышевым по электрополевой диссоциации воды на водород и кислород, в результате которого был установлен 1000% КПД по энергетическим затратам (см.). Этот эксперимент якобы противоречит, если верить своим глазам, Закону Сохранения Энергии и может быть поэтому предается забвению, так же как открытие в 1974 г. Белорусским ученым Сергеем Ушеренко его «Эффекта Ушеренко», где выделяемая энергия в мишени превосходит в 10 2 10 4 раз кинетическую энергию внедряемой в мишень частицы (см.). Общим свойством этих процессов является то, что в первом случае электрическое поле, во втором случае песок внедряются в инородные тела, где выделяется энергия, в сотни раз превосходящая энергию возбудителей.

Целью изобретения является расширение технических и технологических

возможностей применения вышеизложенных эффектов.

Из воды и устройство для его осуществления

Указанная цель достигаются тем, что на воду одновременно и по всему объему воздействуем электрическим и магнитным полями. На фиг.2 показано строение молекулы воды. Угол 104 градуса и 27 минут между связями O-H. Молекула воды соорентирована электрическим полем с напряженностью Е вдоль электрического поля с некоторой силой, которая разлагает часть воды на ионы водорода и кислорода. Вода насыщается газами, емкостное сопротивление возрастает (емкость конденсатора падает) производительность разложения падает до тех пор, пока не наступит равновесие между процессами образования и удаления ионов. Из анализа видно, что протекание стороннего тока через воду непосредственно не влияет на процесс ее разложения. Для увеличения производительности разложения воды применяем магнитное поле с некоторой напряженностью H, вектор которого направлен перпендикулярно вектору напряженности электрического поля E, при этом вектора на молекулу воды действуют одновременно и в резонансном режиме по отношению к гидродинамическим колебаниям воды, которые благодаря силам Лоренца возникают при протекании через магнитное поле воды, содержащей ионы (см. БСЭ, 2-е издание, том 19, статья «Кавитация»; Онацкая А.А., Музалевская Н.И. «Активируемая вода», «Химия-традиционная и нетрадиционная», Ленинград, Изд. Ленинградского университета, 1985 г., гл. 8. магнитное поле). Одновременное действие полей да еще в резонансном режиме, значительно увеличивает импульс силы и импульсный момент действующих на молекулу воды, к тому же магнитное поле способствует быстрейшему выводу ионов с рабочей зоны разложения воды, чем стабилизирует емкостное сопротивление. На фиг.1 показана схема одновременного излучения электрического и магнитного полей на обрабатываемый объем воды. Излучение происходит за счет двух колебательных контуров Л1С1 и Л2С2, причем емкость первого (второго) и связанная с ней индуктивность второго (первого) контура одновременно заряжаются и разряжаются с заданной частотой. Для этого необходимо, чтобы питающие напряжения контуров было сдвинуто по фазе на угол 90 градусов. Эти же условия необходимы и при работе контуров в режиме резонанса напряжений.

Rnrnrn rnrnrn rnrnrn

На фиг.3 показано устройство разложения воды электромагнитным полем, которое содержит корпус 1, где расположены элементы С1-Л2, С2-Л1, С3-Л4 ИС4-Л3, контуров С1-Л1, С2-Л2, С3-Л3, С4-Л4, работающие в режиме резонанса напряжений или токов, причем контуры С1-Л1, С3-Л3 работают при напряжении по отношению к контурам С2-Л2, С4-Л4, сдвинутым по фазе на угол 90 градусов. Между пластинами конденсаторов и индуктивностями имеются полости 3 обработки воды, связанные каналами 4 с входным и выходным отверстиями 2. Верхние отверстия 5 и нижние отверстия 6 связаны с полостями 3 и служат для отвода газов через потенциальные сетки (условно не показаны).

Устройство получения водорода из воды работает следующим образом

При подаче выпрямленного импульсного высоковольтного напряжения и заполнения полостей 3 циркуляционной нагретой (например, солнечными коллекторами или выхлопной водой водородных двигателей) водой, в полостях 3 происходит ее разложение на ионы водорода и кислорода, которые под действием магнитного поля перемещаются по отверстиям 5, 6, нейтрализуются потенциальными сетками и транспортируются потребителю.

Предлагаемое техническое решение позволяет повысить производительность, уменьшить энергозатраты на единицу производимого продукта и как следствие удешевить производство водорода.

Формула изобретения

1. Способ получения водорода из воды, включающий обработку воды одновременно электрическим и магнитным полями для разложения молекул воды на кислород и водород посредством пары колебательных контуров, состоящих из водяного конденсатора с изолированными обкладками, на которые подают высоковольтное выпрямленное напряжение импульсной формы, индуктивностей и размещенных между пластинами конденсаторов и индуктивностями полостей для обрабатываемой воды, при этом воздействие на воду полями осуществляют в резонансном режиме по отношению к гидродинамическим колебаниям воды при направлении вектора напряженности магнитного поля перпендикулярно вектору напряженности электрического поля.

2. из воды, содержащее пару колебательных контуров, каждый из которых состоит из водяного конденсатора с изолированными обкладками, на которые подается высоковольтное выпрямленное напряжение импульсной формы, индуктивностей и размещенных между пластинами конденсаторов и индуктивностями полостей для обрабатываемой воды, при этом емкость конденсатора первого колебательного контура связана с индуктивностью второго колебательного контура, а емкость второго колебательного контура связана с индуктивностью первого колебательного контура с возможностью одновременной их зарядки и разрядки, при этом входные напряжения сдвинуты по фазе на 90°.

Если найти дешёвый и простой способ электролиза/фотолиза воды, то мы получим невероятно богатый и чистый источник энергии - водородное топливо. Сгорая в кислороде, водород не образует никаких побочных выделений, кроме воды. Теоретически, электролиз - очень простой процесс: достаточно пропустить электрический ток через воду, и она разделяется на водород и кислород. Но сейчас все разработанные техпроцессы требуют такого большого количества энергии, что электролиз становится невыгодным.

Теперь учёные решили часть головоломки. Исследователи из Технион-Израильского технологического института разработали метод проведения второго из двух шагов окислительно-восстановительной реакции - восстановления - в видимом (солнечном) свете с энергетической эффективностью 100% , значительно превзойдя предыдущий рекорд 58,5%.

Осталось усовершенствовать полуреакцию окисления.

Столь высокой эффективности удалось добиться благодаря тому, что в процессе используется только энергия света. Катализаторами (фотокатализаторами) выступают наностержни длиной 50 нм. Они абсорбируют фотоны от источника освещения - и выдают электроны.

В полуреакции окисления производятся четыре отдельных атома водорода и молекула О 2 (которая не нужна). В полуреакции восстановления четыре атома водорода спариваются в две молекулы H 2 , производя полезную форму водорода - газ H 2 ,

Эффективность 100% означает, что все фотоны, поступившие в систему, участвуют в генерации электронов.

На такой эффективности каждый наностержень генерирует около 100 молекул H 2 в секунду.

Сейчас учёные работают над оптимизацией техпроцесса, который пока что требует щелочной среды с невероятно высоким pH. Такой уровень никак не приемлем для реальных условий эксплуатации.

К тому же, наностержни подвержены коррозии, что тоже не слишком хорошо.

Тем не менее, сегодня человечество стало на шажок ближе к получению неиссякаемого источника чистой энергии в виде водородного топлива.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png